Multifractal analysis of geodesic flows on surfaces without focal points

被引:1
作者
Park, Kiho [1 ]
Wang, Tianyu [2 ]
机构
[1] Univ Chicago, Dept Math, Chicago, IL 60637 USA
[2] Ohio State Univ, Dept Math, 231 W 18th Ave, Columbus, OH 43210 USA
来源
DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL | 2021年 / 36卷 / 04期
关键词
VARIATIONAL-PRINCIPLES; EQUILIBRIUM STATES; MANIFOLDS; ENTROPY;
D O I
10.1080/14689367.2021.1978394
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study multifractal spectra of the geodesic flows on compact rank 1 surfaces without focal points. We compute the entropy of the level sets for the Lyapunov exponents and establish a lower bound for their Hausdorff dimension in terms of the pressure function and its Legendre transform. In doing so, we employ and generalize results of Burns and Gelfert for non-positively curved surfaces and construct an increasingly nested sequence of basic sets in the complement of the singular set on which the geodesic flow is non-uniformly hyperbolic. Such a sequence of basic sets eventually contains any given basic set.
引用
收藏
页码:656 / 684
页数:29
相关论文
共 25 条
[1]   Extension of zero-dimensional hyperbolic sets to locally maximal ones [J].
Anosov, D. V. .
SBORNIK MATHEMATICS, 2010, 201 (07) :935-946
[2]   Birkhoff averages for hyperbolic flows: Variational principles and applications [J].
Barreira, L ;
Doutor, P .
JOURNAL OF STATISTICAL PHYSICS, 2004, 115 (5-6) :1567-1603
[3]   Variational principles and mixed multifractal spectra [J].
Barreira, L ;
Saussol, B .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2001, 353 (10) :3919-3944
[4]   TOPOLOGICAL ENTROPY FOR NONCOMPACT SETS [J].
BOWEN, R .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 184 (OCT) :125-136
[5]   Unique equilibrium states for geodesic flows in nonpositive curvature [J].
Burns, K. ;
Climenhaga, V ;
Fisher, T. ;
Thompson, D. J. .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2018, 28 (05) :1209-1259
[6]   LYAPUNOV SPECTRUM FOR GEODESIC FLOWS OF RANK 1 SURFACES [J].
Burns, Keith ;
Gelfert, Katrin .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2014, 34 (05) :1841-1872
[7]   Properties of equilibrium states for geodesic flows over manifolds without focal points [J].
Chen, Dong ;
Kao, Lien-Yung ;
Park, Kiho .
ADVANCES IN MATHEMATICS, 2021, 380
[8]   Unique equilibrium states for geodesic flows over surfaces without focal points [J].
Chen, Dong ;
Kao, Lien-Yung ;
Park, Kiho .
NONLINEARITY, 2020, 33 (03) :1118-1155
[9]  
Climenhaga V, THERMODYNAMIC FORMAL
[10]   Bowen's equation in the non-uniform setting [J].
Climenhaga, Vaughn .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2011, 31 :1163-1182