Simultaneous image fusion and denoising with adaptive sparse representation

被引:315
作者
Liu, Yu [1 ]
Wang, Zengfu [1 ,2 ]
机构
[1] Univ Sci & Technol China, Dept Automat, Hefei 230026, Peoples R China
[2] Chinese Acad Sci, Inst Intelligent Machines, Hefei 230031, Peoples R China
关键词
INFORMATION MEASURE; QUALITY ASSESSMENT; PERFORMANCE; SUPERRESOLUTION; DICTIONARIES; TRANSFORM; ALGORITHM;
D O I
10.1049/iet-ipr.2014.0311
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this study, a novel adaptive sparse representation (ASR) model is presented for simultaneous image fusion and denoising. As a powerful signal modelling technique, sparse representation (SR) has been successfully employed in many image processing applications such as denoising and fusion. In traditional SR-based applications, a highly redundant dictionary is always needed to satisfy signal reconstruction requirement since the structures vary significantly across different image patches. However, it may result in potential visual artefacts as well as high computational cost. In the proposed ASR model, instead of learning a single redundant dictionary, a set of more compact sub-dictionaries are learned from numerous high-quality image patches which have been pre-classified into several corresponding categories based on their gradient information. At the fusion and denoising processes, one of the sub-dictionaries is adaptively selected for a given set of source image patches. Experimental results on multi-focus and multi-modal image sets demonstrate that the ASR-based fusion method can outperform the conventional SR-based method in terms of both visual quality and objective assessment.
引用
收藏
页码:347 / 357
页数:11
相关论文
共 41 条
[1]   K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation [J].
Aharon, Michal ;
Elad, Michael ;
Bruckstein, Alfred .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2006, 54 (11) :4311-4322
[2]   Fusion of multi-focus images using differential evolution algorithm [J].
Aslantas, V. ;
Kurban, R. .
EXPERT SYSTEMS WITH APPLICATIONS, 2010, 37 (12) :8861-8870
[3]   A new automated quality assessment algorithm for image fusion [J].
Chen, Yin ;
Blum, Rick S. .
IMAGE AND VISION COMPUTING, 2009, 27 (10) :1421-1432
[4]   The nonsubsampled contourlet transform: Theory, design, and applications [J].
da Cunha, Arthur L. ;
Zhou, Jianping ;
Do, Minh N. .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2006, 15 (10) :3089-3101
[5]   Image Deblurring and Super-Resolution by Adaptive Sparse Domain Selection and Adaptive Regularization [J].
Dong, Weisheng ;
Zhang, Lei ;
Shi, Guangming ;
Wu, Xiaolin .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2011, 20 (07) :1838-1857
[6]   Image denoising via sparse and redundant representations over learned dictionaries [J].
Elad, Michael ;
Aharon, Michal .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2006, 15 (12) :3736-3745
[7]   A Plurality of Sparse Representations Is Better Than the Sparsest One Alone [J].
Elad, Michael ;
Yavneh, Irad .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2009, 55 (10) :4701-4714
[8]   Multi-focus image fusion based on non-subsampled shearlet transform [J].
Gao Guorong ;
Xu Luping ;
Feng Dongzhu .
IET IMAGE PROCESSING, 2013, 7 (06) :633-639
[9]   Image fusion: Advances in the state of the art [J].
Goshtasby, A. Ardeshir ;
Nikolov, Stavri .
INFORMATION FUSION, 2007, 8 (02) :114-118
[10]   Comments on 'Information measure for performance of image fusion' [J].
Hossny, M. ;
Nahavandi, S. ;
Creighton, D. .
ELECTRONICS LETTERS, 2008, 44 (18) :1066-U28