Graded multiplicities in the exterior algebra

被引:14
作者
Bazlov, Y [1 ]
机构
[1] Weizmann Inst Sci, IL-76100 Rehovot, Israel
关键词
Lie algebra; multiplicity; Macdonald polynomials;
D O I
10.1006/aima.2000.1969
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper deals with the graded multiplicities of the "smallest" irreducible representations of a simple Lie algebra in its exterior algebra. An explicit formula for the graded multiplicity or the adjoint representation in terms of the Weyl group, exponents was conjectured by A. Joseph: a proof of this conjecture, based on the properties of Macdonald polynomials, is given in the present payer. The same method allows us to calculate the multiplicity of the simple module with highest weight equal to the short dominant root. (C) 2001 Academic Press.
引用
收藏
页码:129 / 153
页数:25
相关论文
共 11 条
[1]  
Bourbaki N., 1968, Actualites Scientifiques et Industrielles, V1337
[2]   DOUBLE AFFINE HECKE ALGEBRAS AND MACDONALDS CONJECTURES [J].
CHEREDNIK, I .
ANNALS OF MATHEMATICS, 1995, 141 (01) :191-216
[3]  
Joseph A, 1998, NATO ADV SCI I C-MAT, V514, P237
[4]  
Kac V.G., 1983, PROGR MATH, V44
[5]   Lectures on affine Hecke algebras and Macdonald's conjectures [J].
Kirillov, AA .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1997, 34 (03) :251-292
[6]   Clifford algebra analogue of the Hopf-Koszul-Samelson theorem, the rho-decomposition C(g)=end V-rho circle times C(P), and the g-module structure of Lambda g [J].
Kostant, B .
ADVANCES IN MATHEMATICS, 1997, 125 (02) :275-350
[7]  
Macdonald I. G., 1998, University Lecture Series, V12
[8]  
MacDonald IG, 1996, ASTERISQUE, P189
[9]  
MACDONALD IG, 1988, ACT 20 SEM LOTH, P131
[10]   Exterior powers of the adjoint representation [J].
Reeder, M .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1997, 49 (01) :133-159