On Duffing equation with random perturbations

被引:1
作者
Ambrazevicius, A. [1 ]
Ivanauskas, F. [1 ]
Pragarauskas, H. [2 ]
机构
[1] Vilnius State Univ, Fac Matthemat & Informat, LT-03225 Vilnius, Lithuania
[2] Inst Math & Informat, LT-08663 Vilnius, Lithuania
来源
NONLINEAR ANALYSIS-MODELLING AND CONTROL | 2010年 / 15卷 / 02期
关键词
Duffing equation; noise-induced synchronization; random perturbations; NOISE-INDUCED SYNCHRONIZATION; CHAOTIC SYSTEMS;
D O I
10.15388/NA.15.2.14348
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a family of particles with different initial states and/or velocities whose dynamics is described by a modified Duffing equation with random perturbations. Sufficient conditions ensuring almost identical sample paths of the particles after a long time are given.
引用
收藏
页码:129 / 138
页数:10
相关论文
共 9 条
  • [1] Bibikov J. N., 1981, GEN COURSE ORDINARY
  • [2] Complete and generalized synchronization in a class of noise perturbed chaotic systems
    Chen, Zhang
    Lin, Wei
    Zhou, Jie
    [J]. CHAOS, 2007, 17 (02)
  • [3] Feller W., 1966, An Introduction to Probability Theory and Its Application, V1-2
  • [4] Guckenheimer J., 2013, NONLINEAR OSCILLATIO, V42
  • [5] Synchronization of chaotic systems driven by identical noise
    Kaulakys, B
    Ivanauskas, F
    Meskauskas, T
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1999, 9 (03): : 533 - 539
  • [6] A note on synchronization of diffusion
    Mackevicius, V
    [J]. MATHEMATICS AND COMPUTERS IN SIMULATION, 2000, 52 (5-6) : 491 - 495
  • [7] Chaotic transition of random dynamical systems and chaos synchronization by common noises
    Rim, S
    Hwang, DU
    Kim, I
    Kim, CM
    [J]. PHYSICAL REVIEW LETTERS, 2000, 85 (11) : 2304 - 2307
  • [8] Analytical and numerical studies of noise-induced synchronization of chaotic systems
    Toral, R
    Mirasso, CR
    Hernández-García, E
    Piro, O
    [J]. CHAOS, 2001, 11 (03) : 665 - 673
  • [9] Noise-induced synchronization in Lorenz oscillators
    Yang, Junzhong
    Zhang, Mei
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2008, 22 (08): : 997 - 1004