P300 Detection Using Nonlinear Independent Component Analysis

被引:0
|
作者
Turnip, Arjon [1 ]
Siahaan, Mery [1 ]
Suprijanto [2 ]
Waafi, Affan Kaysa [2 ]
机构
[1] Indonesian Inst Sci, Tech Implementat Unit Instrumentat Dev, Bandung, Indonesia
[2] Bandung Inst Technol ITB, Fac Ind Technol, Instrumentat & Control Res Grp, Bandung, Indonesia
来源
2013 3RD INTERNATIONAL CONFERENCE ON INSTRUMENTATION CONTROL AND AUTOMATION (ICA 2013) | 2013年
关键词
Brain computer interface (BCI); Classification accuracy; Transfer rate; Nonlinear; ICA Electroencephalogram (EEG); BRAIN-COMPUTER INTERFACE; SEPARATION; BCI;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, a nonlinear independent component analysis (NICA) extraction method for brain signal based EEG-P300 are proposed. The performance of the proposed method is investigated through a comparison of well-known extraction methods (i.e., AAR, JADE, and SOBI algorithms). Finally, the promising results reported here reflect the considerable potential of EEG for the continuous classification of mental states.
引用
收藏
页码:104 / 109
页数:6
相关论文
共 50 条
  • [1] Extraction of P300 Using Constrained Independent Component Analysis
    Khan, Ozair Idris
    Kim, Sang-Hyuk
    Rasheed, Tahir
    Khan, Adil
    Kim, Tae-Seong
    2009 ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-20, 2009, : 4031 - +
  • [2] Single Trial Independent Component Analysis for P300 BCI System
    Li, Kun
    Sankar, Ravi
    Arbel, Yael
    Donchin, Emanuel
    2009 ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-20, 2009, : 4035 - +
  • [3] Stacked Autoencoders for the P300 Component Detection
    Vareka, Lukas
    Mautner, Pavel
    FRONTIERS IN NEUROSCIENCE, 2017, 11
  • [4] Real-time feature extraction of P300 component using adaptive nonlinear principal component analysis
    Arjon Turnip
    Keum-Shik Hong
    Myung-Yung Jeong
    BioMedical Engineering OnLine, 10
  • [5] P300 Based Single Trial Independent Component Analysis on EEG Signal
    Li, Kun
    Sankar, Ravi
    Arbel, Yael
    Donchin, Emanuel
    FOUNDATIONS OF AUGMENTED COGNITION, PROCEEDINGS: NEUROERGONOMICS AND OPERATIONAL NEUROSCIENCE, 2009, 5638 : 404 - +
  • [6] Real-time feature extraction of P300 component using adaptive nonlinear principal component analysis
    Turnip, Arjon
    Hong, Keum-Shik
    Jeong, Myung-Yung
    BIOMEDICAL ENGINEERING ONLINE, 2011, 10
  • [7] A Two Stage Single Trial P300 Detection Algorithm Based on Independent Component Analysis and Wavelet Transforms
    Haghighatpanah, Neda
    Amirfattahi, Rasoul
    Abootalebi, Vahid
    Nazari, Behzad
    2012 19TH IRANIAN CONFERENCE OF BIOMEDICAL ENGINEERING (ICBME), 2012, : 256 - 261
  • [8] MULTIMODAL DETECTION OF DECEPTION USING FUSION OF REACTION TIME AND P300 COMPONENT
    Mohammadian, A.
    Abootalebi, V.
    Moradi, M. H.
    Khalilzadeh, M. A.
    2008 CAIRO INTERNATIONAL BIOMEDICAL ENGINEERING CONFERENCE, 2008, : 176 - +
  • [9] THE P300 COMPONENT IN SLEEP
    WESENSTEN, NJ
    BADIA, P
    PHYSIOLOGY & BEHAVIOR, 1988, 44 (02) : 215 - 220
  • [10] On P300 Detection using Scalar Products
    Fira, Monica
    Goras, Liviu
    Lazar, Anca
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2018, 9 (01) : 99 - 104