Numerical solution of differential equations using Haar wavelets

被引:233
|
作者
Lepik, Ü [1 ]
机构
[1] Univ Turku, Inst Appl Math, EE-50409 Tartu, Estonia
关键词
Haar wavelets; differential equations; segmentation method; collocation method;
D O I
10.1016/j.matcom.2004.10.005
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Haar wavelet techniques for the solution of ODE and PDE is discussed. Based on the Chen-Hsiao method [C.F. Chen, C.H. Hsiao, Haar wavelet method for solving lumped and distributed-parameter systems, IEE Proc.-Control Theory Appl. 144 (1997) 87-94; C.F. Chen, C.H. Hsiao, Wavelet approach to optimising dynamic systems, IEE Proc. Control Theory Appl. 146 (1997) 213-219] a new approach-the segmentation method-is developed. Five test problems are solved. The results are compared with the result obtained by the Chen-Hsiao method and with the method of piecewise constant approximation [C.H. Hsiao, W.J. Wang, Haar wavelet approach to nonlinear stiff systems, Math. Comput. Simulat. 57 (2001) 347-353; S. Goedecker, O. lvanov, Solution of multiscale partial differential equations using wavelets, Comput. Phys. 12 (1998) 548-555]. (c) 2004 IMACS. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:127 / 143
页数:17
相关论文
共 50 条
  • [1] Numerical solution of differential equations by using Haar wavelets
    Shi, Zhi
    Deng, Li-Yuan
    Chen, Qing-Jiang
    2007 INTERNATIONAL CONFERENCE ON WAVELET ANALYSIS AND PATTERN RECOGNITION, VOLS 1-4, PROCEEDINGS, 2007, : 1039 - 1044
  • [2] Numerical solution of fractional partial differential equations using Haar wavelets
    Wang, Lifeng
    Meng, Zhijun
    Ma, Yunpeng
    Wu, Zeyan
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2013, 91 (04): : 269 - 287
  • [3] Numerical solution of fractional partial differential equations using Haar wavelets
    Wang, Lifeng
    Meng, Zhijun
    Ma, Yunpeng
    Wu, Zeyan
    CMES - Computer Modeling in Engineering and Sciences, 2013, 91 (04): : 269 - 287
  • [4] NUMERICAL SOLUTION OF DELAY DIFFERENTIAL EQUATIONS VIA HAAR WAVELETS
    Asadi, S.
    Borzabadi, A. H.
    TWMS JOURNAL OF PURE AND APPLIED MATHEMATICS, 2014, 5 (02): : 221 - 228
  • [5] Numerical solution of stiff differential equations via Haar wavelets
    Hsiao, CH
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2005, 82 (09) : 1117 - 1123
  • [6] Numerical solution of time-varying functional differential equations via Haar wavelets
    Hsiao, C. H.
    Wu, S. P.
    APPLIED MATHEMATICS AND COMPUTATION, 2007, 188 (01) : 1049 - 1058
  • [7] A new approach for numerical solution of integro-differential equations via Haar wavelets
    Siraj-ul-Islam
    Aziz, Imran
    Fayyaz, Muhammad
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2013, 90 (09) : 1971 - 1989
  • [8] A numerical assessment of parabolic partial differential equations using Haar and Legendre wavelets
    Siraj-ul-Islam
    Aziz, Imran
    Al-Fhaid, A. S.
    Shah, Ajmal
    APPLIED MATHEMATICAL MODELLING, 2013, 37 (23) : 9455 - 9481
  • [9] NUMERICAL SOLUTION OF ONE-DIMENSIONAL BIHARMONIC EQUATIONS USING HAAR WAVELETS
    Shi, Zhi
    Han, Junli
    PROCEEDINGS OF 2009 INTERNATIONAL CONFERENCE ON WAVELET ANALYSIS AND PATTERN RECOGNITION, 2009, : 369 - 373
  • [10] Numerical solution for singular differential equations using Haar wavelet
    Shukla, Shitesh
    Kumar, Manoj
    INTERNATIONAL JOURNAL OF MODELING SIMULATION AND SCIENTIFIC COMPUTING, 2020, 11 (05)