Numerical solution of differential equations using Haar wavelets

被引:243
作者
Lepik, Ü [1 ]
机构
[1] Univ Turku, Inst Appl Math, EE-50409 Tartu, Estonia
关键词
Haar wavelets; differential equations; segmentation method; collocation method;
D O I
10.1016/j.matcom.2004.10.005
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Haar wavelet techniques for the solution of ODE and PDE is discussed. Based on the Chen-Hsiao method [C.F. Chen, C.H. Hsiao, Haar wavelet method for solving lumped and distributed-parameter systems, IEE Proc.-Control Theory Appl. 144 (1997) 87-94; C.F. Chen, C.H. Hsiao, Wavelet approach to optimising dynamic systems, IEE Proc. Control Theory Appl. 146 (1997) 213-219] a new approach-the segmentation method-is developed. Five test problems are solved. The results are compared with the result obtained by the Chen-Hsiao method and with the method of piecewise constant approximation [C.H. Hsiao, W.J. Wang, Haar wavelet approach to nonlinear stiff systems, Math. Comput. Simulat. 57 (2001) 347-353; S. Goedecker, O. lvanov, Solution of multiscale partial differential equations using wavelets, Comput. Phys. 12 (1998) 548-555]. (c) 2004 IMACS. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:127 / 143
页数:17
相关论文
共 26 条
[1]   On the adaptive computation of integrals of wavelets [J].
Bertoluzza, S ;
Canuto, C ;
Urban, K .
APPLIED NUMERICAL MATHEMATICS, 2000, 34 (01) :13-38
[2]  
BERTOLUZZA S, 1997, MULTISCALE WAVELET M, P109
[3]  
Beylkin G., 1997, MULTISCALE WAVELET M, P137
[4]  
Cattani C., 2004, Proceedings of the Estonian Academy of Sciences. Physics, Mathematics, V53, P45
[5]  
Cattani C, 2001, J INTERDISCIPLINARY, V4, P35
[6]  
CATTANI C, 2000, ACOUSTIC B, V3, P4
[7]  
CATTANI C, 2001, P 3 INT WORKSH MATH, P40
[8]   Haar wavelet method for solving lumped and distributed-parameter systems [J].
Chen, CF ;
Hsiao, CH .
IEE PROCEEDINGS-CONTROL THEORY AND APPLICATIONS, 1997, 144 (01) :87-94
[9]   Wavelet approach to optimising dynamic systems [J].
Chen, CF ;
Hsiao, CH .
IEE PROCEEDINGS-CONTROL THEORY AND APPLICATIONS, 1999, 146 (02) :213-219
[10]   A wavelet-based method for numerical solution of nonlinear evolution equations [J].
Comincioli, V ;
Naldi, G ;
Scapolla, T .
APPLIED NUMERICAL MATHEMATICS, 2000, 33 (1-4) :291-297