Estimating additive character sums for Fuchsian groups

被引:8
作者
Goldfeld, D [1 ]
O'Sullivan, C
机构
[1] Columbia Univ, Dept Math, New York, NY 10027 USA
[2] CUNY, Bronx Community Coll, Dept Math & Comp Sci, Bronx, NY 10453 USA
基金
美国国家科学基金会;
关键词
Eisenstein series; cusp forms; modular symbols; character sums; Kloosterman sums;
D O I
10.1023/A:1026255414488
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the usual construction of non-holomorphic Eisenstein series, for a general Fuchsian group, a multiplicative character may be included. The properties of these series are well known. Here we instead include an additive character and develop the properties of the resulting series. We pay particular attention to additive characters that are non-cuspidal, i.e., that are not zero on some parabolic generators. These series may be used to estimate certain additive character sums. For example, asymptotics for a weighted sum over group elements that counts the number of appearances of a fixed generator of the Fuchsian group are obtained.
引用
收藏
页码:241 / 267
页数:27
相关论文
共 29 条
[1]  
APOSTOL T, 1975, INTRO ANAL NUMBER TH
[2]  
Berndt B. C., 1989, Ramanujan's Notebooks
[3]  
BERNDT BC, 1977, ROCKY MOUNTAIN J MAT, V7
[4]  
Bump D, 1997, Cambridge Studies in Advanced Mathematics, V55
[5]   Grossencharakter L-functions of real quadratic fields twisted by modular symbols [J].
Chinta, G ;
Goldfeld, D .
INVENTIONES MATHEMATICAE, 2001, 144 (03) :435-449
[6]  
CHINTA G, IN PRESS NONHOLOMORP
[7]  
Davenport H., 1980, MULTIPLICATIVE NUMBE
[8]   Hecke theory of series formed with modular symbols and relations among convolution L-functions [J].
Diamantis, N ;
O'Sullivan, C .
MATHEMATISCHE ANNALEN, 2000, 318 (01) :85-105
[9]  
FRICKE R, 1912, VORLESUNGEN THEORIE, V2
[10]  
Fricke R, 1897, VORLESUNGEN THEORIE, V1