Prognostic Methods for Predictive Maintenance: A generalized Topology

被引:3
|
作者
Leohold, Simon [1 ]
Engbers, Hendrik [1 ]
Freitag, Michael [1 ,2 ]
机构
[1] Univ Bremen, BIBA Bremer Inst Prod & Logist GmbH, Bremen, Germany
[2] Univ Bremen, Fac Prod Engn, Bremen, Germany
来源
IFAC PAPERSONLINE | 2021年 / 54卷 / 01期
关键词
Prognostics; Predictive Maintenance; Condition Monitoring; Remaining Useful Lifetime Estimation; Machine Learning; SYSTEM;
D O I
10.1016/j.ifacol.2021.08.073
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Prognostic methods for predictive maintenance have been presented extensively in the literature. While this area's continuing effort positively affects individual predictive maintenance solutions' performance and capabilities, a method's setup remains a big hurdle as the solution space is becoming more complex. The critical settings of a prognostic method are the selection of suitable modeling techniques used for behavior- and condition-modeling, as well as a forecast model for failure prediction. This paper presents a generalized topology of a prognostic method to ease the design of maintenance systems and allow for quicker individual method design and modification. After a broad literature review, the topology and its base components are presented, and an overview of the different kinds of models related to predictive maintenance applications is given. Copyright (C) 2021 The Authors.
引用
收藏
页码:629 / 634
页数:6
相关论文
共 50 条
  • [1] Predictive maintenance of baggage handling conveyors using IoT
    Gupta, Vishal
    Mitra, Rony
    Koenig, Frank
    Kumar, Maneesh
    Tiwari, Manoj Kumar
    COMPUTERS & INDUSTRIAL ENGINEERING, 2023, 177
  • [2] Review of forecasting methods to support photovoltaic predictive maintenance
    Ramirez-Vergara, Jose
    Bosman, Lisa B.
    Wollega, Ebisa
    Leon-Salas, Walter D.
    CLEANER ENGINEERING AND TECHNOLOGY, 2022, 8
  • [3] Predictive maintenance using cox proportional hazard deep learning
    Chen, Chong
    Liu, Ying
    Wang, Shixuan
    Sun, Xianfang
    Di Cairano-Gilfedder, Carla
    Titmus, Scott
    Syntetos, Aris A.
    ADVANCED ENGINEERING INFORMATICS, 2020, 44
  • [4] Data-Driven Methods for Predictive Maintenance of Industrial Equipment: A Survey
    Zhang, Weiting
    Yang, Dong
    Wang, Hongchao
    IEEE SYSTEMS JOURNAL, 2019, 13 (03): : 2213 - 2227
  • [5] Incorporating Machine Learning Methods for Predictive Maintenance and Fuzzy Inventory Optimization
    Shobana, S.
    Wavare, Mahesh Sahebrao
    Kalaiarasi, K.
    Bhaskar, T.
    Anand, M. Clement Joe
    Sindhuja, N.
    INTELLIGENT AND FUZZY SYSTEMS, VOL 2, INFUS 2024, 2024, 1089 : 666 - 678
  • [6] A systematic literature review of machine learning methods applied to predictive maintenance
    Carvalho, Thyago P.
    Soares, Fabrizzio A. A. M. N.
    Vita, Roberto
    Francisco, Robert da P.
    Basto, Joao P.
    Alcala, Symone G. S.
    COMPUTERS & INDUSTRIAL ENGINEERING, 2019, 137
  • [7] Intelligent Choice of Machine Learning Methods for Predictive Maintenance of Intelligent Machines
    Becherer, Marius
    Zipperle, Michael
    Karduck, Achim
    COMPUTER SYSTEMS SCIENCE AND ENGINEERING, 2020, 35 (02): : 81 - 89
  • [8] Motor Classification with Machine Learning Methods for Predictive Maintenance
    Kammerer, Christoph
    Gaust, Michael
    Kuestner, Micha
    Starke, Pascal
    Radtke, Roman
    Jesser, Alexander
    IFAC PAPERSONLINE, 2021, 54 (01): : 1059 - 1064
  • [9] Predictive Maintenance Architecture
    Motaghare, Omkar
    Pillai, Anju S.
    Ramachandran, K. I.
    2018 IEEE INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND COMPUTING RESEARCH (IEEE ICCIC 2018), 2018, : 207 - 210
  • [10] Artificial intelligence and real-time predictive maintenance in industry 4.0: a bibliometric analysis
    Aurelien Teguede Keleko
    Bernard Kamsu-Foguem
    Raymond Houe Ngouna
    Amèvi Tongne
    AI and Ethics, 2022, 2 (4): : 553 - 577