Enabling multi-modal search for inspirational design stimuli using deep learning

被引:9
|
作者
Kwon, Lisa [1 ]
Huang, Forrest [2 ]
Goucher-Lambert, Kosa [1 ]
机构
[1] Univ Calif Berkeley, Dept Mech Engn, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA
基金
美国国家科学基金会;
关键词
Deep learning; design creativity; inspirational design stimuli; multi-modal search; IDEA GENERATION; REPRESENTATION; SYSTEMS;
D O I
10.1017/S0890060422000130
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Inspirational stimuli are known to be effective in supporting ideation during early-stage design. However, prior work has predominantly constrained designers to using text-only queries when searching for stimuli, which is not consistent with real-world design behavior where fluidity across modalities (e.g., visual, semantic, etc.) is standard practice. In the current work, we introduce a multi-modal search platform that retrieves inspirational stimuli in the form of 3D-model parts using text, appearance, and function-based search inputs. Computational methods leveraging a deep-learning approach are presented for designing and supporting this platform, which relies on deep-neural networks trained on a large dataset of 3D-model parts. This work further presents the results of a cognitive study (n = 21) where the aforementioned search platform was used to find parts to inspire solutions to a design challenge. Participants engaged with three different search modalities: by keywords, 3D parts, and user-assembled 3D parts in their workspace. When searching by parts that are selected or in their workspace, participants had additional control over the similarity of appearance and function of results relative to the input. The results of this study demonstrate that the modality used impacts search behavior, such as in search frequency, how retrieved search results are engaged with, and how broadly the search space is covered. Specific results link interactions with the interface to search strategies participants may have used during the task. Findings suggest that when searching for inspirational stimuli, desired results can be achieved both by direct search inputs (e.g., by keyword) as well as by more randomly discovered examples, where a specific goal was not defined. Both search processes are found to be important to enable when designing search platforms for inspirational stimuli retrieval.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] MULTI-MODAL SEARCH FOR INSPIRATIONAL EXAMPLES IN DESIGN
    Kwon, Elisa
    Huang, Forrest
    Goucher-Lambert, Kosa
    PROCEEDINGS OF ASME 2021 INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, IDETC-CIE2021, VOL 6, 2021,
  • [2] Learning of Multi-Modal Stimuli in Hawkmoths
    Balkenius, Anna
    Dacke, Marie
    PLOS ONE, 2013, 8 (07):
  • [3] A Framework for Enabling Unpaired Multi-Modal Learning for Deep Cross-Modal Hashing Retrieval
    Williams-Lekuona, Mikel
    Cosma, Georgina
    Phillips, Iain
    JOURNAL OF IMAGING, 2022, 8 (12)
  • [4] Multi-modal deep learning for landform recognition
    Du, Lin
    You, Xiong
    Li, Ke
    Meng, Liqiu
    Cheng, Gong
    Xiong, Liyang
    Wang, Guangxia
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2019, 158 : 63 - 75
  • [5] Deep Multi-modal Learning with Cascade Consensus
    Yang, Yang
    Wu, Yi-Feng
    Zhan, De-Chuan
    Jiang, Yuan
    PRICAI 2018: TRENDS IN ARTIFICIAL INTELLIGENCE, PT II, 2018, 11013 : 64 - 72
  • [6] Multi-modal deep distance metric learning
    Roostaiyan, Seyed Mahdi
    Imani, Ehsan
    Baghshah, Mahdieh Soleymani
    INTELLIGENT DATA ANALYSIS, 2017, 21 (06) : 1351 - 1369
  • [7] Deep reinforcement learning for financial trading using multi-modal features
    Avramelou, Loukia
    Nousi, Paraskevi
    Passalis, Nikolaos
    Tefas, Anastasios
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 238
  • [8] Multi-modal body part segmentation of infants using deep learning
    Voss, Florian
    Brechmann, Noah
    Lyra, Simon
    Rixen, Joeran
    Leonhardt, Steffen
    Antink, Christoph Hoog
    BIOMEDICAL ENGINEERING ONLINE, 2023, 22 (01)
  • [9] Combining Multi-Modal Statistics for Welfare Prediction Using Deep Learning
    Sharma, Pulkit
    Manandhar, Achut
    Thomson, Patrick
    Katuva, Jacob
    Hope, Robert
    Clifton, David A.
    SUSTAINABILITY, 2019, 11 (22)
  • [10] Multi-modal data clustering using deep learning: A systematic review
    Raya, Sura
    Orabi, Mariam
    Afyouni, Imad
    Al Aghbari, Zaher
    NEUROCOMPUTING, 2024, 607