Relaxation of singular functionals defined on Sobolev spaces

被引:26
作者
Ben Belgacem, H [1 ]
机构
[1] Inst Preparatoire Etud Ingn Sfax, Dept Math, Sfax 3000, Tunisia
关键词
rank-one convexity; quasiconvexity; weak lower semicontinuity;
D O I
10.1051/cocv:2000102
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we consider a Borel measurable function on the space of m x n matrices f:M-m x n --> (R) over bar taking the value +infinity, such that its rank-one-convex envelope Rf is finite and satisfies for some fixed p>1: -c(0) less than or equal to Rf(F)less than or equal toc(1+ parallel toF parallel to (p)) for all F is an element of M-m x n, where c,c(0) >0. Let Omega be a given regular bounded open domain of R-n. We define on W-1,W-p (Omega; R-m) the functional I(u)= f(Omega)f(delu(x)) dx. Then, under some technical restrictions on f, we show that the relaxed functional (I) over bar for the weak topology of W-1,W-p(Omega; R-m) has the integral representation: (I) over bar (u)=f(Omega)Q[Rf](delu(x)) dx, where for a given function g, Qg denotes its quasiconvex envelope.
引用
收藏
页码:71 / 85
页数:15
相关论文
共 32 条
[1]   A VARIATIONAL DEFINITION OF THE STRAIN-ENERGY FOR AN ELASTIC STRING [J].
ACERBI, E ;
BUTTAZZO, G ;
PERCIVALE, D .
JOURNAL OF ELASTICITY, 1991, 25 (02) :137-148
[2]   SEMICONTINUITY PROBLEMS IN THE CALCULUS OF VARIATIONS [J].
ACERBI, E ;
FUSCO, N .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1984, 86 (02) :125-145
[3]  
Anzellotti G., 1994, Asymptotic Analysis, V9, P61
[4]  
BALL JM, 1984, J FUNCT ANAL, V58, P225, DOI 10.1016/0022-1236(84)90041-7
[5]   FINE PHASE MIXTURES AS MINIMIZERS OF ENERGY [J].
BALL, JM ;
JAMES, RD .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1987, 100 (01) :13-52
[6]  
BENBELGACEM H, 1996, THESIS U PIERRE MARI
[7]  
BENBELGACEM H, 1996, CR ACAD SCI I-MATH, P845
[8]   The effective bulk energy of the relaxed energy of multiple integrals below the growth exponent [J].
Bouchitte, G ;
Fonseca, I ;
Maly, J .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1998, 128 :463-479
[9]  
Ciarlet P.G., 1988, Mathematical Elasticity Volume I: Three-Dimensional Elasticity, V20
[10]   QUASICONVEXITY AND RELAXATION OF NONCONVEX PROBLEMS IN THE CALCULUS OF VARIATIONS [J].
DACOROGNA, B .
JOURNAL OF FUNCTIONAL ANALYSIS, 1982, 46 (01) :102-118