Boundary layer separation and local behavior for the Steady Prandtl equation

被引:14
作者
Shen, Weiming [1 ]
Wang, Yue [1 ]
Zhang, Zhifei [2 ]
机构
[1] Capital Normal Univ, Sch Math Sci, Beijing 100048, Peoples R China
[2] Peking Univ, Sch Math Sci, Beijing 100871, Peoples R China
关键词
Steady Prandtl equation; Boundary layer separation; Local behavior; ZERO-VISCOSITY LIMIT; NAVIER-STOKES EQUATIONS; ANALYTIC SOLUTIONS; INVISCID LIMIT; HALF-SPACE; INSTABILITY; EXISTENCE; EULER;
D O I
10.1016/j.aim.2021.107896
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we prove the boundary layer separation of the steady Prandtl equation for Oleinik's data ensuring the local existence of the solution under suitable adverse pressure gradient, and confirm Goldstein's hypothesis on the separation rate. We also study the local behavior of the solution near the separation point, which is related to Open problem 5 proposed by Oleinik and Samokhin (P.501, [25]). (c) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页数:25
相关论文
共 32 条
[1]   SEPARATION FOR THE STATIONARY PRANDTL EQUATION [J].
Dalibard, Anne-Laure ;
Masmoudi, Nader .
PUBLICATIONS MATHEMATIQUES DE L IHES, 2019, 130 (01) :187-297
[2]   On the zero-viscosity limit of the Navier-Stokes equations in R+3 without analyticity [J].
Fei, Mingwen ;
Tao, Tao ;
Zhang, Zhifei .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2018, 112 :170-229
[3]  
Gerard-Varet D., ARXIV180502928
[4]   GEVREY STABILITY OF PRANDTL EXPANSIONS FOR 2-DIMENSIONAL NAVIER-STOKES FLOWS [J].
Gerard-Varet, David ;
Maekawa, Yasunori ;
Masmoudi, Nader .
DUKE MATHEMATICAL JOURNAL, 2018, 167 (13) :2531-2631
[6]  
Grenier E, 2000, COMMUN PUR APPL MATH, V53, P1067
[7]  
Grenier E., ARXIV170601282
[8]  
Grenier E, 2019, ANN PDE, V5, DOI 10.1007/s40818-019-0074-3
[9]   SPECTRAL INSTABILITY OF CHARACTERISTIC BOUNDARY LAYER FLOWS [J].
Grenier, Emmanuel ;
Guo, Yan ;
Nguyen, Toan T. .
DUKE MATHEMATICAL JOURNAL, 2016, 165 (16) :3085-3146
[10]  
Guo Y., 2017, Ann. PDE, DOI [10.1007/s40818-016-0020-6, DOI 10.1007/S40818-016-0020-6, /10.1007/s40818-016-0020-6]