Pluripotential theory for convex bodies in RN

被引:10
作者
Burns, D [1 ]
Levenberg, N
Ma'u, S
机构
[1] Univ Michigan, Dept Math, Ann Arbor, MI 48109 USA
[2] Univ Auckland, Dept Math, Auckland 1, New Zealand
关键词
D O I
10.1007/s00209-004-0743-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:91 / 111
页数:21
相关论文
共 21 条
[1]  
BAGBY T, 1993, LECT NOTES MATH, V1550, P7
[2]  
BARAN M, 1992, MICH MATH J, V39, P395
[3]  
BARAN M, 1988, ANN POL MATH, V48, P275, DOI DOI 10.4064/AP-48-3-275-280
[4]   FOLIATIONS AND COMPLEX MONGE-AMPERE EQUATIONS [J].
BEDFORD, E ;
KALKA, M .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1977, 30 (05) :543-571
[5]  
BLOOM T, 2003, ANN POL MATH, V80, P55, DOI DOI 10.4064/ap80-0-4
[6]  
BORELL S, THESIS MID SWEDEN U
[7]   On the Siciak extremal function for real compact convex sets [J].
Bos, L ;
Calvi, JP ;
Levenberg, N .
ARKIV FOR MATEMATIK, 2001, 39 (02) :245-262
[9]  
KOMEK M, 1991, PLURIPOTENTIAL THEOR
[10]   SYMMETRIES AND OTHER TRANSFORMATIONS OF THE COMPLEX MONGE-AMPERE EQUATION [J].
LEMPERT, L .
DUKE MATHEMATICAL JOURNAL, 1985, 52 (04) :869-885