STABILITY FOR NEMATIC LIQUID CRYSTALS WITH STRETCHING TERMS

被引:11
作者
Climent-Ezquerra, B. [1 ]
Guillen-Gonzalez, F. [1 ]
Rodriguez-Bellido, M. A. [1 ]
机构
[1] Univ Seville, Dept Ecuac Diferenciales & Anal Numer, E-41080 Seville, Spain
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 2010年 / 20卷 / 09期
关键词
Nematic liquid crystal system; asymptotic stability; stability; stretching effects; existence; regularity; FLOW;
D O I
10.1142/S0218127410027477
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study a nematic crystal model that appeared in [Liu et al., 2007], modeling stretching effects depending on the different shapes of the microscopic molecules of the material, under periodic boundary conditions. The aim of the present article is two-fold: to extend the results given in [Sun & Liu, 2009], to a model with more complete stretching terms and to obtain some stability and asymptotic stability properties for this model.
引用
收藏
页码:2937 / 2942
页数:6
相关论文
共 6 条
[1]   Reproductivity for a nematic liquid crystal model [J].
Climent-Ezquerra, Blanca ;
Guillen-Gonzalez, Francisco ;
Rojas-Medar, Marko .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2006, 57 (06) :984-998
[2]   Regularity and time-periodicity for a nematic liquid crystal model [J].
Climent-Ezquerra, Blanca ;
Guillen-Gonzalez, Francisco ;
Jesus Moreno-Iraberte, M. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (1-2) :539-549
[3]   Existence of solutions for the Ericksen-Leslie system [J].
Lin, FH ;
Liu, C .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2000, 154 (02) :135-156
[4]   NONPARABOLIC DISSIPATIVE SYSTEMS MODELING THE FLOW OF LIQUID-CRYSTALS [J].
LIN, FH ;
LIU, C .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1995, 48 (05) :501-537
[5]  
Liu C, 2007, COMMUN COMPUT PHYS, V2, P1184
[6]   ON ENERGETIC VARIATIONAL APPROACHES IN MODELING THE NEMATIC LIQUID CRYSTAL FLOWS [J].
Sun, Huan ;
Liu, Chun .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2009, 23 (1-2) :455-475