Boundary Harnack principle and Martin boundary for a uniform domain

被引:86
作者
Aikawa, H [1 ]
机构
[1] Shimane Univ, Dept Math, Matsue, Shimane 6908504, Japan
关键词
boundary Harnack principle; Martin boundary; Green function; harmonic measure;
D O I
10.2969/jmsj/05310119
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We establish a uniform boundary Harnack principle for a uniform domain. As applications we study the Holder continuity of the ratios of positive harmonic functions, the Martin boundary and the Fatou theorem for a uniform domain.
引用
收藏
页码:119 / 145
页数:27
相关论文
共 24 条
[1]   Integrability of superharmonic functions in a John domain [J].
Aikawa, H .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 128 (01) :195-201
[2]   Norm estimate of Green operator, perturbation of Green function and integrability of superharmonic functions [J].
Aikawa, H .
MATHEMATISCHE ANNALEN, 1998, 312 (02) :289-318
[3]  
Aikawa H., 1996, LECT NOTES MATH, V1633
[4]  
Ancona A., 1978, ANN I FOURIER GRENOB, V28, P169
[5]   POSITIVE HARMONIC-FUNCTIONS ON COMPLETE MANIFOLDS OF NEGATIVE CURVATURE [J].
ANDERSON, MT ;
SCHOEN, R .
ANNALS OF MATHEMATICS, 1985, 121 (03) :429-461
[6]  
Balogh Z, 1996, REV MAT IBEROAM, V12, P299
[7]   HOLDER DOMAINS AND THE BOUNDARY HARNACK PRINCIPLE [J].
BANUELOS, R ;
BASS, RF ;
BURDZY, K .
DUKE MATHEMATICAL JOURNAL, 1991, 64 (01) :195-200
[8]   A BOUNDARY HARNACK PRINCIPLE IN TWISTED HOLDER DOMAINS [J].
BASS, RF ;
BURDZY, K .
ANNALS OF MATHEMATICS, 1991, 134 (02) :253-276
[9]  
Bass RF., 1995, Probabilistic techniques in analysis
[10]   BOUNDARY-BEHAVIOR OF NONNEGATIVE SOLUTIONS OF ELLIPTIC-OPERATORS IN DIVERGENCE FORM [J].
CAFFARELLI, L ;
FABES, E ;
MORTOLA, S ;
SALSA, S .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1981, 30 (04) :621-640