Cu2ZnSnS4 solar cells with over 10% power conversion efficiency enabled by heterojunction heat treatment

被引:488
作者
Yan, Chang [1 ]
Huang, Jialiang [1 ]
Sun, Kaiwen [1 ]
Johnston, Steve [2 ]
Zhang, Yuanfang [1 ]
Sun, Heng [1 ]
Pu, Aobo [1 ]
He, Mingrui [1 ]
Liu, Fangyang [1 ]
Eder, Katja [3 ]
Yang, Limei [3 ]
Cairney, Julie M. [3 ]
Ekins-Daukes, N. J. [1 ]
Hameiri, Ziv [1 ]
Stride, John A. [4 ]
Chen, Shiyou [5 ]
Green, Martin A. [1 ]
Hao, Xiaojing [1 ]
机构
[1] Univ New South Wales, Australian Ctr Adv Photovolta, Sch Photovolta & Renewable Energy Engn, Sydney, NSW, Australia
[2] Natl Renewable Energy Lab, Golden, CO USA
[3] Univ Sydney, Australian Ctr Microscopy & Microanal, Sydney, NSW, Australia
[4] Univ New South Wales, Sch Chem, Sydney, NSW, Australia
[5] East China Normal Univ, Sch Informat Sci & Technol, Shanghai, Peoples R China
来源
NATURE ENERGY | 2018年 / 3卷 / 09期
基金
澳大利亚研究理事会;
关键词
OPTIMIZATION; IMPACT; FILMS; LAYER;
D O I
10.1038/s41560-018-0206-0
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Sulfide kesterite Cu2ZnSnS4 provides an attractive low-cost, environmentally benign and stable photovoltaic material, yet the record power conversion efficiency for such solar cells has been stagnant at around 9% for years. Severe non-radiative recombination within the heterojunction region is a major cause limiting voltage output and overall performance. Here we report a certified 11% efficiency Cu2ZnSnS4 solar cell with a high 730 mV open-circuit voltage using heat treatment to reduce heterojunction recombination. This heat treatment facilitates elemental inter-diffusion, directly inducing Cd atoms to occupy Zn or Cu lattice sites, and promotes Na accumulation accompanied by local Cu deficiency within the heterojunction region. Consequently, new phases are formed near the hetero-interface and more favourable conduction band alignment is obtained, contributing to reduced non-radiative recombination. Using this approach, we also demonstrate a certified centimetre-scale (1.11 cm(2)) 10% efficiency Cu2ZnSnS4 photovoltaic device; the first kesterite cell (including selenium-containing) of standard centimetre-size to exceed 10%.
引用
收藏
页码:764 / 772
页数:9
相关论文
共 48 条
[1]  
[Anonymous], 34 IEEE PHOT SPEC C
[2]  
[Anonymous], JPN J APPL PHYS
[3]   Efficient kesterite solar cells with high open-circuit voltage for applications in powering distributed devices [J].
Antunez, Priscilla D. ;
Bishop, Douglas M. ;
Luo, Yu ;
Haight, Richard .
NATURE ENERGY, 2017, 2 (11) :884-890
[4]   High efficiency thin-film CuIn1-xGaxSe2 photovoltaic cells using a Cd1-xZnxS buffer layer [J].
Bhattacharya, R. N. ;
Contreras, M. A. ;
Egaas, B. ;
Noufi, R. N. ;
Kanevce, A. ;
Sites, J. R. .
APPLIED PHYSICS LETTERS, 2006, 89 (25)
[5]   Classification of Lattice Defects in the Kesterite Cu2ZnSnS4 and Cu2ZnSnSe4 Earth-Abundant Solar Cell Absorbers [J].
Chen, Shiyou ;
Walsh, Aron ;
Gong, Xin-Gao ;
Wei, Su-Huai .
ADVANCED MATERIALS, 2013, 25 (11) :1522-1539
[6]  
Chirila A, 2013, NAT MATER, V12, P1107, DOI [10.1038/NMAT3789, 10.1038/nmat3789]
[7]   What is the band alignment of Cu2ZnSn(S,Se)4 solar cells? [J].
Crovetto, Andrea ;
Hansen, Ole .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2017, 169 :177-194
[8]   Zinc-Tin-Oxide Buffer Layer and Low Temperature Post Annealing Resulting in a 9.0% Efficient Cd-Free Cu2ZnSnS4 Solar Cell [J].
Ericson, Tove ;
Larsson, Fredrik ;
Torndahl, Tobias ;
Frisk, Christopher ;
Larsen, Jes ;
Kosyak, Volodymyr ;
Hagglund, Carl ;
Li, Shuyi ;
Platzer-Bjorkman, Charlotte .
SOLAR RRL, 2017, 1 (05)
[9]   Band tailing and efficiency limitation in kesterite solar cells [J].
Gokmen, Tayfun ;
Gunawan, Oki ;
Todorov, Teodor K. ;
Mitzi, David B. .
APPLIED PHYSICS LETTERS, 2013, 103 (10)
[10]  
Green MA, 2017, PROG PHOTOVOLTAICS, V25, P668, DOI [10.1002/pip.2909, 10.1002/pip.2978, 10.1002/pip.3040]