Interplay between PEO tether length and ligand spacing governs cell spreading on RGD-modified PMMA-g-PEO comb copolymers

被引:55
作者
Kuhlman, William
Taniguchi, Ikuo
Griffith, Linda G.
Mayes, Anne M.
机构
[1] MIT, Dept Mat Sci & Engn, Cambridge, MA 02139 USA
[2] MIT, Dept Biol Engn, Cambridge, MA 02139 USA
关键词
D O I
10.1021/bm070237o
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The effects of tether length on cell adhesion to poly(methyl methacrylate)-graft-poly(ethylene oxide), PMMA-g,-PEO, comb copolymer films functionalized with the adhesion peptide RGD were investigated. Copolymers having PEO tether lengths of 10 and 22 EO segments were synthesized and coupled with a synthetic peptide that contained both RGD and the synergy sequence PHSRN. Cell spreading assays revealed that the longer polymer tethers increased the rate of spreading and reduced the time required for fibroblasts to form focal adhesions. Fluorescence resonance energy transfer (FRET) measurements indicated a mean separation between integrin-bound peptides of 15.6 +/- 1.4 nm for combs with long (22-mer) tethers, compared with 17.5 +/- 1.3 nm for short (10-mer) tethers, on films of comparable peptide density (similar to 2500 peptides/mu m(2)). The results suggest that the added mobility afforded by the more extensible tethers encouraged the formation of focal adhesions by allowing cells to reorganize tethered peptides on the nanometer length scale. In addition, adhesion peptides were selectively coupled to 10-mer or 22-mer PEO tethers within a bimodal brush to investigate stratification effects on cell adhesion. Peptides bound by short tethers in a bed of long unsubstituted chains resulted in surfaces that resisted, rather than promoted, cell adhesion. By contrast, when long peptide tethers were employed with short unsubstituted chains, cell attachment and spreading were comparable to that found on a monomodal brush of long chains at equivalent peptide density.
引用
收藏
页码:3206 / 3213
页数:8
相关论文
共 65 条
  • [1] ANDRES JG, 2006, ADV POLYM SCI, V203, P171
  • [2] P-MALEIMIDOPHENYL ISOCYANATE - A NOVEL HETEROBIFUNCTIONAL LINKER FOR HYDROXYL TO THIOL COUPLING
    ANNUNZIATO, ME
    PATEL, US
    RANADE, M
    PALUMBO, PS
    [J]. BIOCONJUGATE CHEMISTRY, 1993, 4 (03) : 212 - 218
  • [3] BEER JH, 1992, BLOOD, V79, P117
  • [4] The effect on osteoblast function of colocalized RGD and PHSRN epitopes on PEG surfaces
    Benoit, DSW
    Anseth, KS
    [J]. BIOMATERIALS, 2005, 26 (25) : 5209 - 5220
  • [5] Integrin dimerization and ligand organization: Key components in integrin clustering for cell adhesion
    Brinkerhoff, CJ
    Linderman, JJ
    [J]. TISSUE ENGINEERING, 2005, 11 (5-6): : 865 - 876
  • [6] BUCK CA, 1987, ANNU REV CELL BIOL, V3, P179, DOI 10.1146/annurev.cellbio.3.1.179
  • [7] Organization of the integrin LFA-1 in nanoclusters regulates its activity
    Cambi, Alessandra
    Joosten, Ben
    Koopman, Marjolein
    de Lange, Frank
    Beeren, Inge
    Torensma, Ruurd
    Fransen, Jack A.
    Garcia-Parajo, Maria
    van Leeuwen, Frank N.
    Figdor, Carl G.
    [J]. MOLECULAR BIOLOGY OF THE CELL, 2006, 17 (10) : 4270 - 4281
  • [8] Cell spreading and focal adhesion dynamics are regulated by spacing of integrin ligands
    Cavalcanti-Adam, Elisabetta Ada
    Volberg, Tova
    Micoulet, Alexandre
    Kessler, Horst
    Geiger, Benjamin
    Spatz, Joachim Pius
    [J]. BIOPHYSICAL JOURNAL, 2007, 92 (08) : 2964 - 2974
  • [9] DENSITY PROFILE OF TERMINALLY ANCHORED POLYMER-CHAINS - A MONTE-CARLO STUDY
    CHAKRABARTI, A
    TORAL, R
    [J]. MACROMOLECULES, 1990, 23 (07) : 2016 - 2021
  • [10] Chan W., 1999, Fmoc solid phase peptide synthesis: a practical approach