On some congruences of certain binomial sums

被引:15
作者
Chen, Yungui [1 ]
Xie, Xiaoyan [1 ]
He, Bing [2 ]
机构
[1] Inner Mongolia Univ Technol, Coll Management, 49 Aimin St, Hohhot 010051, Inner Mongolia, Peoples R China
[2] E China Normal Univ, Dept Math, Shanghai Key Lab PMMP, 500 Dongchuan Rd, Shanghai 200241, Peoples R China
关键词
Binomial coefficients; Congruence; WZ method;
D O I
10.1007/s11139-015-9687-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For any prime p > 3 we prove that Sigma(k=0) (p-1) 3k+1/(-8)(k) ((2k)(k))(3) equivalent to p (-1/p) + p(3) Ep-3 (mod p(4)), where E-0, E-1, E-2, ... are Euler numbers and (./p) is the Legendre symbol. This result confirms a conjecture of Z.-W. Sun. We also re-prove that for any odd prime p, Sigma (k=0) (p-1/2) 6k+1/(-512)(k) ((2k)(k))(3) equivalent to p (-2/p) (mod p(2)) using WZ method.
引用
收藏
页码:237 / 244
页数:8
相关论文
共 16 条
[1]  
[Anonymous], 1862, Quart. J. Pure Appl. Math
[2]  
[Anonymous], 1996, A=B.
[3]  
Ekhad D., 1994, GEOMETRY ANAL MECH, P107
[5]  
Granville A., 1997, ORGANIC MATH, V20, P253
[6]   "DIVERGENT" RAMANUJAN-TYPE SUPERCONGRUENCES [J].
Guillera, Jesus ;
Zudilin, Wadim .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 140 (03) :765-777
[7]   HYPERGEOMETRIC EVALUATION IDENTITIES AND SUPERCONGRUENCES [J].
Long, Ling .
PACIFIC JOURNAL OF MATHEMATICS, 2011, 249 (02) :405-418
[8]  
Morley F., 1895, Ann. Math, V9, P168, DOI DOI 10.2307/1967516
[9]   A p-adic supercongruence conjecture of van Hamme [J].
Mortenson, Eric .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 136 (12) :4321-4328
[10]   Congruences concerning Legendre polynomials II [J].
Sun, Zhi-Hong .
JOURNAL OF NUMBER THEORY, 2013, 133 (06) :1950-1976