Intervals of effect algebras and pseudo-effect algebras

被引:1
作者
Chajda, Ivan [1 ]
Kuehr, Jan [1 ]
机构
[1] Palacky Univ, Fac Sci, Dept Algebra & Geometry, CZ-77146 Olomouc, Czech Republic
关键词
pseudo-effect algebra; interval; po-group; Riesz decomposition property; compatibility; state; MV-ALGEBRAS;
D O I
10.2478/s12175-010-0036-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is shown that an arbitrary interval of a pseudo-effect algebra is a pseudo-effect algebra and some results concerning Riesz decomposition properties, compatibilities and states are proved.
引用
收藏
页码:615 / 630
页数:16
相关论文
共 13 条
[1]  
Chajda I., 2006, Mathematica Slovaca, V56, P275
[2]  
Chajda I., 2006, Mathematica Slovaca, V56, P47
[3]  
Dvurecenskij A, 2004, KYBERNETIKA, V40, P397
[4]   Central elements and Cantor-Bernstein's theorem for pseudo-effect algebras [J].
Dvurecenskij, A .
JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2003, 74 :121-143
[5]   Pseudo MV-algebras are intervals in l-groups [J].
Dvurecenskij, A .
JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2002, 72 :427-445
[6]   Pseudoeffect algebras. II. Group representations [J].
Dvurecenskij, A ;
Vetterlein, T .
INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2001, 40 (03) :703-726
[7]   Pseudoeffect algebras. I. Basic properties [J].
Dvurecenskij, A ;
Vetterlein, T .
INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2001, 40 (03) :685-701
[8]  
Dvurecenskij A, 2003, DEMONSTR MATH, V36, P261
[9]  
Georgescu G., 2001, Multiple-Valued Logics, V6, P193
[10]  
Jakubik J., 2006, Mathematica Slovaca, V56, P387