NONLOCAL HENON EQUATION WITH NONLINEARITIES INVOLVING SOBOLEV CRITICAL AND SUPERCRITICAL GROWTH

被引:0
作者
Barboza, Eudes M. [1 ]
Miyagaki, Olimpio H. [2 ]
Pereira, Fabio R. [3 ]
Santana, Claudia R. [4 ]
机构
[1] Univ Fed Rural Pernambuco, Dept Matemat, BR-50740560 Recife, PE, Brazil
[2] Univ Fed Sao Carlos, Dept Math, BR-13565905 Sao Carlos, SP, Brazil
[3] Univ Fed Juiz de Fora, Dept Matemat, BR-36036330 Juiz De Fora, MG, Brazil
[4] Univ Estadual Santa Cruz Ilheus, Dept Ciencias Exatas & Tecnol, BR-45662900 Ilheus, BA, Brazil
基金
巴西圣保罗研究基金会;
关键词
CONCENTRATION-COMPACTNESS PRINCIPLE; SCHRODINGER-EQUATION; POSITIVE SOLUTIONS; CALCULUS; CONCAVE;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the following class of fractional Henon problems involving exponents critical or supercritical {(-Delta)(s) u = lambda vertical bar x vertical bar(mu) u + vertical bar x vertical bar(alpha) vertical bar u vertical bar((p alpha,s)*(+epsilon)-1)u in Omega, u = 0 in R-N / Omega, where p(alpha,s)* = N+2 alpha+2s/N-2s is the critical exponent for a nonlinearity with Henon weight in nonlocal context, epsilon >= 0, Omega is either a ball or an annulus in R-N, s is an element of (0, 1) and mu, alpha > -2s. We used the Emden-Fowler transformation to make the one-dimensional reduction of problems and under appropriate hypotheses on the constant lambda, we prove the existence of at least one non-trivial radial solution for these problems using the concentration compactness principle or Linking Theorem.
引用
收藏
页码:407 / 435
页数:29
相关论文
共 27 条
[1]   COMBINED EFFECTS OF CONCAVE AND CONVEX NONLINEARITIES IN SOME ELLIPTIC PROBLEMS [J].
AMBROSETTI, A ;
BREZIS, H ;
CERAMI, G .
JOURNAL OF FUNCTIONAL ANALYSIS, 1994, 122 (02) :519-543
[2]  
[Anonymous], 1985, Rev. Mat. Iberoamericana, DOI [DOI 10.4171/RMI/6, 10.4171/RMI/6]
[3]  
Barboza EM, 2021, ELECTRON J DIFFER EQ, P1
[4]  
Barrios B, 2020, CALC VAR PARTIAL DIF, V59, DOI 10.1007/s00526-020-01763-z
[5]   On some critical problems for the fractional Laplacian operator [J].
Barrios, B. ;
Colorado, E. ;
de Pablo, A. ;
Sanchez, U. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2012, 252 (11) :6133-6162
[6]   Fractional Hardy-Sobolev equations with nonhomogeneous terms [J].
Bhakta, Mousomi ;
Chakraborty, Souptik ;
Pucci, Patrizia .
ADVANCES IN NONLINEAR ANALYSIS, 2021, 10 (01) :1086-1116
[7]  
Br~ezis H, 1999, ANAL FONCTIONNELLE T, V88
[8]   POSITIVE SOLUTIONS OF NON-LINEAR ELLIPTIC-EQUATIONS INVOLVING CRITICAL SOBOLEV EXPONENTS [J].
BREZIS, H ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1983, 36 (04) :437-477
[9]   Existence theorems for the Schrodinger equation involving a critical Sobolev exponent [J].
Chabrowski, J ;
Yang, JF .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1998, 49 (02) :276-293
[10]  
de Figueiredo D., 1982, LECT NOTES MATH