2D amorphous-MoO3_ x@Ti3C2-MXene non-van der Waals heterostructures as anode materials for lithium-ion batteries

被引:93
作者
Yan, Pengfei [1 ]
Ji, Liang [1 ]
Liu, Xiaopeng [1 ]
Guan, Qinghua [1 ]
Guo, Junling [1 ]
Shen, Yonglong [1 ]
Zhang, Haijun [3 ]
Wei, Weifeng [4 ]
Cui, Xinwei [1 ,2 ]
Xu, Qun [1 ,2 ]
机构
[1] Zhengzhou Univ, Coll Mat Sci & Engn, Zhengzhou 450001, Peoples R China
[2] Zhengzhou Univ, Inst Adv Technol, Zhengzhou 450052, Peoples R China
[3] Natl United Engn Lab Biomed Mat Modificat, Branden Ind Pk, Dezhou 251100, Shandong, Peoples R China
[4] Cent South Univ, State Key Lab Powder Met, Changsha 410083, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
Heterostructures; MXene; Amorphous materials; Metal oxides; Lithium-ion storage; LI-ION; ELECTROCHEMICAL PERFORMANCE; HIGH-ENERGY; ALPHA-MOO3; ULTRAFAST; STORAGE; SODIUM; MXENE;
D O I
10.1016/j.nanoen.2021.106139
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
2D heterostructures offer a great opportunity in seeking high-performing energy storage materials; however, performance ceiling exists, limited by their van-der-Waals (vdW) interactions. Here, we explore a novel 2D, amorphous MoO3_x (aMoO3_x) on Ti3C2-MXene, non-vdW heterostructure via a facile synthesis route. Density functional theory computations suggest that the non-vdW heterostructure can strongly stabilize aMoO3_x while maintaining electrical conductivity at a high level. Facile 2D Li-ion diffusion can then be achieved in the restacked 2D non-vdW heterostructures due to the weakened interactions between two defective MoO3_x layers, leading to a capacitor-like interlayer diffusion reaching a large capacity of 426 C g_ 1 on the surface of the amorphous layer and a diffusion-controlled intralayer diffusion of 546 C g_ 1 within the amorphous layer. These characteristics optimize Li-ion storage kinetics while achieving full capacities of amorphous materials with high stability. This work might offer a feasible platform of 2D non-vdW heterostructures for boosting and understanding Li-ion storage performance.
引用
收藏
页数:10
相关论文
共 40 条
[1]   Atomic layer deposition of SnO2 on MXene for Li-ion battery anodes [J].
Ahmed, Bilal ;
Anjum, Dalaver H. ;
Gogotsi, Yury ;
Alshareef, Husam N. .
NANO ENERGY, 2017, 34 :249-256
[2]   Guidelines for Synthesis and Processing of Two-Dimensional Titanium Carbide (Ti3C2TX MXene) [J].
Alhabeb, Mohamed ;
Maleski, Kathleen ;
Anasori, Babak ;
Lelyukh, Pavel ;
Clark, Leah ;
Sin, Saleesha ;
Gogotsi, Yury .
CHEMISTRY OF MATERIALS, 2017, 29 (18) :7633-7644
[3]   2D metal carbides and nitrides (MXenes) for energy storage [J].
Anasori, Babak ;
Lukatskaya, Maria R. ;
Gogotsi, Yury .
NATURE REVIEWS MATERIALS, 2017, 2 (02)
[4]  
Augustyn V, 2013, NAT MATER, V12, P518, DOI [10.1038/NMAT3601, 10.1038/nmat3601]
[5]  
Brezesinski T, 2010, NAT MATER, V9, P146, DOI [10.1038/nmat2612, 10.1038/NMAT2612]
[6]   Microbe-Assisted Assembly of Ti3C2Tx MXene on Fungi-Derived Nanoribbon Heterostructures for Ultrastable Sodium and Potassium Ion Storage [J].
Cao, Junming ;
Sun, Ziqi ;
Li, Junzhi ;
Zhu, Yukun ;
Yuan, Zeyu ;
Zhang, Yuming ;
Li, Dongdong ;
Wang, Lili ;
Han, Wei .
ACS NANO, 2021, 15 (02) :3423-3433
[7]   MoS2-on-MXene Heterostructures as Highly Reversible Anode Materials for Lithium-Ion Batteries [J].
Chen, Chi ;
Xie, Xiuqiang ;
Anasori, Babak ;
Sarycheva, Asya ;
Makaryan, Taron ;
Zhao, Mengqiang ;
Urbankowski, Patrick ;
Miao, Ling ;
Jiang, Jianjun ;
Gogotsi, Yury .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2018, 57 (07) :1846-1850
[8]   Amorphous Tin Oxide Nanohelix Structure Based Electrode for Highly Reversible Na-Ion Batteries [J].
Choi, Ii Yong ;
Jo, Changshin ;
Lim, Won-Gwang ;
Han, Jong-Chan ;
Chae, Byeong-Gyu ;
Park, Chan Gyung ;
Lee, Jinwoo ;
Kim, Jong Kyu .
ACS NANO, 2019, 13 (06) :6513-6521
[9]   A novel metal-organic layered material with superior supercapacitive performance through ultrafast and reversible tetraethylammonium intercalation [J].
Cui, Xinwei ;
Zhang, Ling ;
Zhang, Jiawen ;
Gong, Lu ;
Gao, Mingwen ;
Zheng, Peitao ;
Xiang, Li ;
Wang, Wenda ;
Hu, Wenjihao ;
Xu, Qun ;
Wei, Weifeng ;
Zeng, Hongbo .
NANO ENERGY, 2019, 59 :102-109
[10]   Van der Waals heterostructures [J].
Geim, A. K. ;
Grigorieva, I. V. .
NATURE, 2013, 499 (7459) :419-425