Selecting dissimilar genes for multi-class classification, an application in cancer subtyping

被引:31
作者
Cai, Zhipeng [1 ]
Goebel, Randy [1 ]
Salavatipour, Mohammad R. [1 ]
Lin, Guohui [1 ]
机构
[1] Univ Alberta, Dept Comp Sci, Edmonton, AB T6G 2E8, Canada
关键词
D O I
10.1186/1471-2105-8-206
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Background: Gene expression microarray is a powerful technology for genetic profiling diseases and their associated treatments. Such a process involves a key step of biomarker identification, which are expected to be closely related to the disease. A most important task of these identified genes is that they can be used to construct a classifier which can effectively diagnose disease and even recognize the disease subtypes. Binary classification, for example, diseased or healthy, in microarray data analysis has been successful, while multi-class classification, such as cancer subtyping, remains challenging. Results: We target on the challenging multi- class classification in microarray data analysis, especially on the cancer subtyping using gene expression microarray. We present a novel class discrimination strength vector to represent individual genes and introduce a new measurement to quantify the class discrimination strength difference between two genes. Such a new distance measure is employed in gene clustering, and subsequently the gene cluster information is exploited to select a set of genes which can be used to construct a sample classifier. We tested our method on four real cancer microarray datasets each contains multiple subtypes of cancer patients. The experimental results show that the constructed classifiers all achieved a higher classification accuracy than the previously best classification results obtained on these four datasets. Additional tests show that the selected genes by our method are less correlated and they all contribute statistically significantly to the more accurate cancer subtyping. Conclusion: The proposed novel class discrimination strength vector is a better representation than the gene expression vector, in the sense that it can be used to effectively eliminate highly correlated but redundant genes for classifier construction. Such a method can build a classifier to achieve a higher classification accuracy, which is demonstrated via cancer subtyping.
引用
收藏
页数:15
相关论文
共 22 条
  • [1] Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays
    Alon, U
    Barkai, N
    Notterman, DA
    Gish, K
    Ybarra, S
    Mack, D
    Levine, AJ
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (12) : 6745 - 6750
  • [2] A Bayesian framework for the analysis of microarray expression data: regularized t-test and statistical inferences of gene changes
    Baldi, P
    Long, AD
    [J]. BIOINFORMATICS, 2001, 17 (06) : 509 - 519
  • [3] Classification of human lung carcinomas by mRNA expression profiling reveals distinct adenocarcinoma subclasses
    Bhattacharjee, A
    Richards, WG
    Staunton, J
    Li, C
    Monti, S
    Vasa, P
    Ladd, C
    Beheshti, J
    Bueno, R
    Gillette, M
    Loda, M
    Weber, G
    Mark, EJ
    Lander, ES
    Wong, W
    Johnson, BE
    Golub, TR
    Sugarbaker, DJ
    Meyerson, M
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (24) : 13790 - 13795
  • [4] New gene selection method for classification of cancer subtypes considering within-class variation
    Cho, JH
    Lee, D
    Park, JY
    Lee, IB
    [J]. FEBS LETTERS, 2003, 551 (1-3) : 3 - 7
  • [5] Gene selection and classification of microarray data using random forest -: art. no. 3
    Díaz-Uriarte, R
    de Andrés, SA
    [J]. BMC BIOINFORMATICS, 2006, 7 (1)
  • [6] Comparison of discrimination methods for the classification of tumors using gene expression data
    Dudoit, S
    Fridlyand, J
    Speed, TP
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2002, 97 (457) : 77 - 87
  • [7] Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring
    Golub, TR
    Slonim, DK
    Tamayo, P
    Huard, C
    Gaasenbeek, M
    Mesirov, JP
    Coller, H
    Loh, ML
    Downing, JR
    Caligiuri, MA
    Bloomfield, CD
    Lander, ES
    [J]. SCIENCE, 1999, 286 (5439) : 531 - 537
  • [8] Gene selection for cancer classification using support vector machines
    Guyon, I
    Weston, J
    Barnhill, S
    Vapnik, V
    [J]. MACHINE LEARNING, 2002, 46 (1-3) : 389 - 422
  • [9] HANCZAR B, 2003, SIGKDD EXPLORATIONS, V5, P23, DOI DOI 10.1145/980972.980977
  • [10] Hastie T., 2000, Genome Biology, V1, pr