Parareal Algorithms Implemented with IMEX Runge-Kutta Methods

被引:5
|
作者
Wang, Zhiyong [1 ]
Wu, Shulin [2 ]
机构
[1] Univ Elect Sci & Technol China, Sch Math Sci, Chengdu 610731, Sichuan, Peoples R China
[2] Sichuan Univ Sci & Engn, Sch Sci, Zigong 643000, Sichuan, Peoples R China
关键词
TIME DISCRETIZATION; PARALLEL; STABILITY; CONVERGENCE; INTEGRATORS; SCHEMES; SYSTEMS;
D O I
10.1155/2015/395340
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Parareal algorithm is a very powerful parallel computation method and has received much interest from many researchers over the past few years. The aim of this paper is to investigate the performance of parareal algorithm implemented with IMEX Runge-Kutta (RK) methods. A stability criterion of the parareal algorithm coupled with IMEX RK methods is established and the advantage (in the sense of stability) of implementing with this kind of RK methods is numerically investigated. Finally, numerical examples are given to illustrate the efficiency and performance of different parareal methods.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] LINEARLY IMPLICIT IMEX RUNGE-KUTTA METHODS FOR A CLASS OF DEGENERATE CONVECTION-DIFFUSION PROBLEMS
    Boscarino, Sebastiano
    Buerger, Raimund
    Mulet, Pep
    Russo, Giovanni
    Villada, Luis M.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2015, 37 (02): : B305 - B331
  • [32] A UNIFIED IMEX RUNGE-KUTTA APPROACH FOR HYPERBOLIC SYSTEMS WITH MULTISCALE RELAXATION
    Boscarino, Sebastiano
    Pareschi, Lorenzo
    Russo, Giovanni
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2017, 55 (04) : 2085 - 2109
  • [33] On the asymptotic properties of IMEX Runge-Kutta schemes for hyperbolic balance laws
    Boscarino, S.
    Pareschi, L.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2017, 316 : 60 - 73
  • [34] Natural Volterra Runge-Kutta methods
    Dajana Conte
    Raffaele D’Ambrosio
    Giuseppe Izzo
    Zdzislaw Jackiewicz
    Numerical Algorithms, 2014, 65 : 421 - 445
  • [35] FAMILIES OF IMBEDDED RUNGE-KUTTA METHODS
    VERNER, JH
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1979, 16 (05) : 857 - 875
  • [36] Efficient symplectic Runge-Kutta methods
    Chan, RPK
    Liu, HY
    Sun, G
    APPLIED MATHEMATICS AND COMPUTATION, 2006, 172 (02) : 908 - 924
  • [37] Runge-Kutta methods of special form
    Ixaru, L. Gr.
    INTERNATIONAL SUMMER SCHOOL FOR ADVANCED STUDIES DYNAMICS OF OPEN NUCLEAR SYSTEMS (PREDEAL12), 2013, 413
  • [38] Equilibrium attractivity of Runge-Kutta methods
    Schmitt, BA
    Weiner, R
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2001, 21 (01) : 327 - 348
  • [39] An introduction to ''Almost Runge-Kutta'' methods
    Butcher, JC
    APPLIED NUMERICAL MATHEMATICS, 1997, 24 (2-3) : 331 - 342
  • [40] Exponentially fitted Runge-Kutta methods
    Vanden Berghe, G
    De Meyer, H
    Van Daele, M
    Van Hecke, T
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2000, 125 (1-2) : 107 - 115