Parareal Algorithms Implemented with IMEX Runge-Kutta Methods

被引:5
|
作者
Wang, Zhiyong [1 ]
Wu, Shulin [2 ]
机构
[1] Univ Elect Sci & Technol China, Sch Math Sci, Chengdu 610731, Sichuan, Peoples R China
[2] Sichuan Univ Sci & Engn, Sch Sci, Zigong 643000, Sichuan, Peoples R China
关键词
TIME DISCRETIZATION; PARALLEL; STABILITY; CONVERGENCE; INTEGRATORS; SCHEMES; SYSTEMS;
D O I
10.1155/2015/395340
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Parareal algorithm is a very powerful parallel computation method and has received much interest from many researchers over the past few years. The aim of this paper is to investigate the performance of parareal algorithm implemented with IMEX Runge-Kutta (RK) methods. A stability criterion of the parareal algorithm coupled with IMEX RK methods is established and the advantage (in the sense of stability) of implementing with this kind of RK methods is numerically investigated. Finally, numerical examples are given to illustrate the efficiency and performance of different parareal methods.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] CONTRACTIVITY OF RUNGE-KUTTA METHODS
    KRAAIJEVANGER, JFBM
    BIT, 1991, 31 (03): : 482 - 528
  • [22] Accelerated Runge-Kutta methods
    Udwadia, Firdaus E.
    Farahani, Artin
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2008, 2008
  • [23] INTERPOLATION FOR RUNGE-KUTTA METHODS
    SHAMPINE, LF
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1985, 22 (05) : 1014 - 1027
  • [24] Error in Runge-Kutta methods
    Prentice, J. S. C.
    INTERNATIONAL JOURNAL OF MATHEMATICAL EDUCATION IN SCIENCE AND TECHNOLOGY, 2013, 44 (03) : 434 - 442
  • [25] EQUILIBRIA OF RUNGE-KUTTA METHODS
    HAIRER, E
    ISERLES, A
    SANZSERNA, JM
    NUMERISCHE MATHEMATIK, 1990, 58 (03) : 243 - 254
  • [26] Runge-Kutta methods in elastoplasticity
    Büttner, J
    Simeon, B
    APPLIED NUMERICAL MATHEMATICS, 2002, 41 (04) : 443 - 458
  • [27] Starting algorithms for Gauss Runge-Kutta methods for Hamiltonian systems
    Calvo, M
    Laburta, MP
    Montijano, JI
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2003, 45 (1-3) : 401 - 410
  • [28] RUNGE-KUTTA ALGORITHMS FOR OSCILLATORY PROBLEMS
    BETTIS, DG
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1979, 30 (04): : 699 - 704
  • [29] Implicit-explicit (IMEX) Runge-Kutta methods for non-hydrostatic atmospheric models
    Gardner, David J.
    Guerra, Jorge E.
    Hamon, Francois P.
    Reynolds, Daniel R.
    Ullrich, Paul A.
    Woodward, Carol S.
    GEOSCIENTIFIC MODEL DEVELOPMENT, 2018, 11 (04) : 1497 - 1515