Spectral Method for Nonlinear Stochastic Partial Differential Equations of Elliptic Type

被引:2
作者
Cao, Yanzhao [2 ]
Yin, Li [1 ]
机构
[1] Inst Appl Phys & Computat Math, LCP, Beijing 100088, Peoples R China
[2] Auburn Univ, Dept Math, Auburn, AL 36849 USA
来源
NUMERICAL MATHEMATICS-THEORY METHODS AND APPLICATIONS | 2011年 / 4卷 / 01期
基金
中国国家自然科学基金;
关键词
Stochastic differential equation; spectral method; error estimates; white noise; APPROXIMATION; DRIVEN; NOISE;
D O I
10.4208/nmtma.2011.m99040
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with the numerical approximations of semi-linear stochastic partial differential equations of elliptic type in multi-dimensions. Convergence analysis and error estimates are presented for the numerical solutions based on the spectral method. Numerical results demonstrate the good performance of the spectral method.
引用
收藏
页码:38 / 52
页数:15
相关论文
共 20 条
[1]  
Adams A., 2003, Sobolev Spaces, V140
[2]  
Allen E. J., 1998, STOCH STOCH REP, V64, P117, DOI DOI 10.1080/17442509808834159
[3]  
[Anonymous], STOCHAST STOCHAST RE
[4]   Galerkin finite element approximations of stochastic elliptic partial differential equations [J].
Babuska, I ;
Tempone, R ;
Zouraris, GE .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2004, 42 (02) :800-825
[5]  
BENTH EE, 1998, STOCHAST REP, V63, P313
[6]  
BUCKDAHN R, 1989, DIFFUSION PROCESS RE, V1, P219
[7]   Numerical approximation of some linear stochastic partial differential equations driven by special additive noises [J].
Du, Q ;
Zhang, TY .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2002, 40 (04) :1421-1445
[8]  
GAO Y, 2006, STOCHASTICS, V78, P179
[9]  
Gyngy I., 2006, Stoch. Int. J. Probab. Stoch. Process, V78, P213, DOI [10.1080/17442500600805047, DOI 10.1080/17442500600805047]
[10]   Lattice approximations for stochastic quasi-linear parabolic partial differential equations driven by space-time white noise I [J].
Gyongy, I .
POTENTIAL ANALYSIS, 1998, 9 (01) :1-25