Invariant operators and the Berezin transform on Cartan domains

被引:6
作者
Englis, M [1 ]
机构
[1] Acad Sci Czech Republ, Inst Math, Prague 11567 1, Czech Republic
关键词
invariant differential operators; Berezin transform; bounded symmetric domains; asymptotic expansions; spherical functions; von Neumann algebras;
D O I
10.1002/mana.19981950105
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let Omega be an irreducible Cartan domain of rank r and genus p and B-nu (nu > p - 1) be the Berezin transform on Omega. It is known that as nu tends to infinity, the Berezin transform admits the asymptotic expansion B-nu approximate to Sigma(k=o)(infinity)Q(k)nu(-k) where the Q(k)'s are certain invariant differential operators - for instance, Q(0) is the identity and Q(1) is the Laplace-Beltrami operator. [See A. UNTERBERGER and H. UPMEIER, Comm. Math. Phys. 164 (1994), 563-598.] In the present paper we show that the operators Q(k) generate the whole ring of invariant differential operators on Omega; in fact, Q(1), Q(3)...,Q(2r-1) and Q(0) form a set of free generators. A bounded version of this result is also given: for any nu > p-1, the r+1 operators B-nu, Bnu+1,..., Bnu+r are a set of generators for the von Neumann algebra 3 of all G-invariant bounded linear operators on L-2(Omega); this algebra can be identified with the algebra of all L-2 - bounded Fourier multipliers, or of all bounded operators which are functions, in the L-2 - spectral - theoretic sense, of certain normal extensions of the invariant differential operators.
引用
收藏
页码:61 / 75
页数:15
相关论文
共 50 条
[41]   The generalized berezin transform and commutator ideals [J].
Davidson, KR ;
Douglas, RG .
PACIFIC JOURNAL OF MATHEMATICS, 2005, 222 (01) :29-56
[42]   m-Berezin Transform on the Polydisk [J].
Kyesook Nam ;
Dechao Zheng .
Integral Equations and Operator Theory, 2006, 56 :93-113
[43]   BOUNDEDNESS OF BEREZIN TRANSFORM ON HERZ SPACES [J].
Cho, Chu-Hee ;
Na, Kyunguk .
JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2012, 49 (04) :829-842
[44]   BEREZIN TRANSFORM OF THE ABSOLUTE VALUE OF AN OPERATOR [J].
Das, Namita ;
Sahoo, Madhusmita .
ANNALS OF FUNCTIONAL ANALYSIS, 2018, 9 (02) :151-165
[45]   Berezin transform on the harmonic Fock space [J].
Englis, Miroslav .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 367 (01) :75-97
[46]   Iterates and the boundary behavior of the Berezin transform [J].
Arazy, J ;
Englis, M .
ANNALES DE L INSTITUT FOURIER, 2001, 51 (04) :1101-1133
[47]   m-Berezin transform on the polydisk [J].
Nam, Kyesook ;
Zheng, Dechao .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 2006, 56 (01) :93-113
[48]   The Berezin transform and Laplace-Beltrami operator [J].
Li, Bo .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 327 (02) :1155-1166
[49]   A Class of Hausdorff–Berezin Operators on the Unit Disc [J].
Alexey Karapetyants ;
Stefan Samko ;
Kehe Zhu .
Complex Analysis and Operator Theory, 2019, 13 :3853-3870