Invariant operators and the Berezin transform on Cartan domains

被引:6
作者
Englis, M [1 ]
机构
[1] Acad Sci Czech Republ, Inst Math, Prague 11567 1, Czech Republic
关键词
invariant differential operators; Berezin transform; bounded symmetric domains; asymptotic expansions; spherical functions; von Neumann algebras;
D O I
10.1002/mana.19981950105
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let Omega be an irreducible Cartan domain of rank r and genus p and B-nu (nu > p - 1) be the Berezin transform on Omega. It is known that as nu tends to infinity, the Berezin transform admits the asymptotic expansion B-nu approximate to Sigma(k=o)(infinity)Q(k)nu(-k) where the Q(k)'s are certain invariant differential operators - for instance, Q(0) is the identity and Q(1) is the Laplace-Beltrami operator. [See A. UNTERBERGER and H. UPMEIER, Comm. Math. Phys. 164 (1994), 563-598.] In the present paper we show that the operators Q(k) generate the whole ring of invariant differential operators on Omega; in fact, Q(1), Q(3)...,Q(2r-1) and Q(0) form a set of free generators. A bounded version of this result is also given: for any nu > p-1, the r+1 operators B-nu, Bnu+1,..., Bnu+r are a set of generators for the von Neumann algebra 3 of all G-invariant bounded linear operators on L-2(Omega); this algebra can be identified with the algebra of all L-2 - bounded Fourier multipliers, or of all bounded operators which are functions, in the L-2 - spectral - theoretic sense, of certain normal extensions of the invariant differential operators.
引用
收藏
页码:61 / 75
页数:15
相关论文
共 50 条
[31]   THE BEREZIN TRANSFORM AND COMMUTATIVITY OF TOEPLITZ OPERATORS ON THE BERGMAN SPACE OF THE UPPER HALF-PLANE [J].
Guenfoud, Tayeb ;
Bebbouchi, Rachid ;
Guediri, Hocine .
PROCEEDINGS OF THE INSTITUTE OF MATHEMATICS AND MECHANICS, 2025, 51 (01) :137-152
[32]   Lipschitz estimates for the Berezin transform [J].
Bommier-Hato, Helene .
JOURNAL OF FUNCTION SPACES AND APPLICATIONS, 2010, 8 (02) :103-128
[33]   Invariant differential operators and the range of the matrix Radon transform [J].
Gonzalez, Fulton B. ;
Kakehi, Tomoyuki .
JOURNAL OF FUNCTIONAL ANALYSIS, 2006, 241 (01) :232-267
[34]   Berezin transform of two arguments [J].
Blaschke, Petr ;
Jahn, Jiri .
JOURNAL OF FUNCTIONAL ANALYSIS, 2015, 268 (12) :3790-3833
[35]   Berezin number inequalities for operators [J].
Bakherad, Mojtaba ;
Garayev, Mubariz T. .
CONCRETE OPERATORS, 2019, 6 (01) :33-43
[36]   Berezin Transform for Solvable Groups [J].
Jonathan Arazy ;
Harald Upmeier .
Acta Applicandae Mathematica, 2004, 81 :5-28
[37]   Berezin transform for solvable groups [J].
Arazy, J ;
Upmeier, H .
ACTA APPLICANDAE MATHEMATICAE, 2004, 81 (1-3) :5-28
[38]   The Berezin Transform and Its Applications [J].
Zhu, Kehe .
ACTA MATHEMATICA SCIENTIA, 2021, 41 (06) :1839-1858
[39]   COVARIANT DERIVATIVES OF THE BEREZIN TRANSFORM [J].
Englis, Miroslav ;
Otahalova, Renata .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2011, 363 (10) :5111-5129
[40]   Localization and Berezin transform on the Fock space [J].
Xia, Jingbo ;
Zheng, Dechao .
JOURNAL OF FUNCTIONAL ANALYSIS, 2013, 264 (01) :97-117