A Logical Model of Nash Bargaining Solution

被引:0
作者
Zhang, Dongmo [1 ]
机构
[1] Univ Western Sydney, Intelligent Syst Lab, Sch Comp & Informat Technol, Penrith, NSW 1797, Australia
来源
19TH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE (IJCAI-05) | 2005年
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a logical extension of Nash's Cooperative Bargaining Theory. We introduce a concept of entrenchment measurement, which maps propositions to real numbers, as a vehicle to represent agent's belief states and attitudes towards bargaining situations. We show that Nash's bargaining solution can be restated in terms of bargainers belief states. Negotiable items, bargaining outcomes and conflicting arguments can then be explicitly expressed in propositional logic meanwhile Nash's numerical solution to bargaining problem is still applicable.
引用
收藏
页码:983 / 988
页数:6
相关论文
共 18 条
[1]  
[Anonymous], 2002, BILATERAL BARGAINING
[2]  
Binmore K, 1992, HDB GAME THEORY EC A, V1, P180
[3]  
Booth Richard, 2001, TARK, P137
[4]  
FATIMA S, 2005, ANN MATH AR IN PRESS
[5]  
GARDENFORS P, 1988, KNOWLEGE FLEX MODELI
[6]  
HOUBA H, 2002, CREDIBLE THREATS NEG
[7]   Reaching agreements through argumentation: a logical model and implementation [J].
Kraus, S ;
Sycara, K ;
Evenchik, A .
ARTIFICIAL INTELLIGENCE, 1998, 104 (1-2) :1-69
[8]  
MEYER T, 2004, KR 04, P311
[9]  
MEYER T, 2004, AAAI 04, P293
[10]   THE BARGAINING PROBLEM [J].
Nash, John F., Jr. .
ECONOMETRICA, 1950, 18 (02) :155-162