Consequences of kriging and land use regression for PM2.5 predictions in epidemiologic analyses: insights into spatial variability using high-resolution satellite data

被引:56
作者
Alexeeff, Stacey E. [1 ,2 ]
Schwartz, Joel [3 ]
Kloog, Itai [3 ,4 ]
Chudnovsky, Alexandra [3 ]
Koutrakis, Petros [3 ]
Coull, Brent A. [1 ]
机构
[1] Harvard Univ, Sch Publ Hlth, Dept Biostat, Boston, MA 02115 USA
[2] Natl Ctr Atmospher Res, Inst Math Appl Geosci, Boulder, CO 80307 USA
[3] Harvard Univ, Sch Publ Hlth, Dept Environm Hlth, Boston, MA 02115 USA
[4] Ben Gurion Univ Negev, Dept Geog & Environm Dev, IL-84105 Beer Sheva, Israel
关键词
air pollution; kriging; land use regression; measurement error; PM2.5; spatial models; AEROSOL OPTICAL DEPTH; AIR-POLLUTION; MEASUREMENT ERROR; MISALIGNED DATA; EXPOSURE; ASSOCIATION; MODELS;
D O I
10.1038/jes.2014.40
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Many epidemiological studies use predicted air pollution exposures as surrogates for true air pollution levels. These predicted exposures contain exposure measurement error, yet simulation studies have typically found negligible bias in resulting health effect estimates. However, previous studies typically assumed a statistical spatial model for air pollution exposure, which may be oversimplified. We address this shortcoming by assuming a realistic, complex exposure surface derived from fine-scale (1 km x 1 km) remote-sensing satellite data. Using simulation, we evaluate the accuracy of epidemiological health effect estimates in linear and logistic regression when using spatial air pollution predictions from kriging and land use regression models. We examined chronic (long-term) and acute (short-term) exposure to air pollution. Results varied substantially across different scenarios. Exposure models with low out-of-sample R-2 yielded severe biases in the health effect estimates of some models, ranging from 60% upward bias to 70% downward bias. One land use regression exposure model with >0.9 out-of-sample R-2 yielded Upward biases up to 13% for acute health effect estimates. Almost all models drastically underestimated the SEs. Land use regression models performed better in chronic effect simulations. These results can help researchers when interpreting health effect estimates in these types of studies.
引用
收藏
页码:138 / 144
页数:7
相关论文
共 21 条
[1]   Particulate Matter Air Pollution and Cardiovascular Disease An Update to the Scientific Statement From the American Heart Association [J].
Brook, Robert D. ;
Rajagopalan, Sanjay ;
Pope, C. Arden, III ;
Brook, Jeffrey R. ;
Bhatnagar, Aruni ;
Diez-Roux, Ana V. ;
Holguin, Fernando ;
Hong, Yuling ;
Luepker, Russell V. ;
Mittleman, Murray A. ;
Peters, Annette ;
Siscovick, David ;
Smith, Sidney C., Jr. ;
Whitsel, Laurie ;
Kaufman, Joel D. .
CIRCULATION, 2010, 121 (21) :2331-2378
[2]   Measurement Error in Epidemiologic Studies of Air Pollution Based on Land-Use Regression Models [J].
Basagana, Xavier ;
Aguilera, Inmaculada ;
Rivera, Marcela ;
Agis, David ;
Foraster, Maria ;
Marrugat, Jaume ;
Elosua, Roberto ;
Kuenzli, Nino .
AMERICAN JOURNAL OF EPIDEMIOLOGY, 2013, 178 (08) :1342-1346
[3]   Estimating long-term average particulate air pollution concentrations: Application of traffic indicators and geographic information systems [J].
Brauer, M ;
Hoek, G ;
van Vliet, P ;
Meliefste, K ;
Fischer, P ;
Gehring, U ;
Heinrich, J ;
Cyrys, J ;
Bellander, T ;
Lewne, M ;
Brunekreef, B .
EPIDEMIOLOGY, 2003, 14 (02) :228-239
[4]  
Carroll J., 2006, MEASUREMENT ERROR NO, V2nd edn
[5]  
Chudnovsky A. A., 2013, ATMOSPHERIC CHEM PHY, V13, P14581, DOI [DOI 10.5194/ACPD-13-14581-2013, 10.5194/acpd-13-14581-2013]
[6]   Land use regression modeling of intra-urban residential variability in multiple traffic-related air pollutants [J].
Clougherty, Jane E. ;
Wright, Rosalind J. ;
Baxter, Lisa K. ;
Levy, Jonathan I. .
ENVIRONMENTAL HEALTH, 2008, 7 (1)
[7]   Measurement error caused by spatial misalignment in environmental epidemiology [J].
Gryparis, Alexandros ;
Paciorek, Christopher J. ;
Zeka, Ariana ;
Schwartz, Joel ;
Coull, Brent A. .
BIOSTATISTICS, 2009, 10 (02) :258-274
[8]   Spatial analysis of air pollution and mortality in Los Angeles [J].
Jerrett, M ;
Burnett, RT ;
Ma, RJ ;
Pope, CA ;
Krewski, D ;
Newbold, KB ;
Thurston, G ;
Shi, YL ;
Finkelstein, N ;
Calle, EE ;
Thun, MJ .
EPIDEMIOLOGY, 2005, 16 (06) :727-736
[9]   Incorporating Local Land Use Regression And Satellite Aerosol Optical Depth In A Hybrid Model Of Spatiotemporal PM2.5 Exposures In The Mid-Atlantic States [J].
Kloog, Itai ;
Nordio, Francesco ;
Coull, Brent A. ;
Schwartz, Joel .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2012, 46 (21) :11913-11921
[10]   Using new satellite based exposure methods to study the association between pregnancy pm2.5 exposure, premature birth and birth weight in Massachusetts [J].
Kloog, Itai ;
Melly, Steven J. ;
Ridgway, William L. ;
Coull, Brent A. ;
Schwartz, Joel .
ENVIRONMENTAL HEALTH, 2012, 11