Symmetry Reduction of (2+1)-Dimensional Lax-Kadomtsev-Petviashvili Equation

被引:1
作者
Hu Heng-Chun [1 ]
Wang Jing-Bo [1 ]
Zhu Hai-Dong [2 ]
机构
[1] Univ Shanghai Sci & Technol, Coll Sci, Shanghai 200093, Peoples R China
[2] Chinese Acad Sci, Shanghai Inst Opt & Fine Mech, Natl Lab High Power Laser & Phys, Shanghai 201800, Peoples R China
基金
中国国家自然科学基金;
关键词
Clarkson-Kruskal direct method; Lax-Kadomtsev-Petviashvili equation; symmetry reduction; exact solution; SYSTEM;
D O I
10.1088/0253-6102/63/2/03
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The Lax-Kadomtsev-Petviashvili equation is derived from the Lax fifth order equation, which is an important mathematical model in fluid physics and quantum field theory. Symmetry reductions of the Lax-Kadomtsev-Petviashvili equation are studied by the means of the Clarkson-Kruskal direct method and the corresponding reduction equations are solved directly with arbitrary constants and functions.
引用
收藏
页码:136 / 140
页数:5
相关论文
共 15 条
  • [1] Bluman George W, 2013, Fractional Order Systems, V81, DOI [10.1007/978-1-4757-4307-4, DOI 10.1007/978-1-4757-4307-4]
  • [2] Symmetry Analysis and Conservation Laws to the (2+1)-Dimensional Coupled Nonlinear Extension of the Reaction-Diffusion Equation
    Chen Jun-Chao
    Xin Xiang-Peng
    Chen Yong
    [J]. COMMUNICATIONS IN THEORETICAL PHYSICS, 2014, 62 (02) : 173 - 182
  • [3] NEW SIMILARITY REDUCTIONS OF THE BOUSSINESQ EQUATION
    CLARKSON, PA
    KRUSKAL, MD
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1989, 30 (10) : 2201 - 2213
  • [4] Hirota R., 2004, The Direct Method in Soliton Theory, DOI 10.1017/CBO9780511543043
  • [5] Nonlocalization of Nonlocal Symmetry and Symmetry Reductions of the Burgers Equation
    Jin Yan
    Jia Man
    Lou Sen-Yue
    [J]. COMMUNICATIONS IN THEORETICAL PHYSICS, 2012, 58 (06) : 795 - 799
  • [6] On a generalized fifth order KdV equations
    Kaya, D
    El-Sayed, SM
    [J]. PHYSICS LETTERS A, 2003, 310 (01) : 44 - 51
  • [7] DARBOUX TRANSFORMS, DEEP REDUCTIONS AND SOLITONS
    LEBLE, SB
    USTINOV, NV
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1993, 26 (19): : 5007 - 5016
  • [8] Olver P.J., 2000, Application of Lie Groups to Differential Equations, V2nd
  • [9] Ovsiannikov L.W., 1978, GROUP ANAL DIFFERENT
  • [10] A TRIANGULARIZATION ALGORITHM WHICH DETERMINES THE LIE SYMMETRY ALGEBRA OF ANY SYSTEM OF PDES
    REID, GJ
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1990, 23 (17): : L853 - L859