Electrically driven phase transition in magnetite nanostructures

被引:121
作者
Lee, Sungbae [1 ]
Fursina, Alexandra [2 ]
Mayo, John T. [2 ]
Yavuz, Cafer T. [2 ]
Colvin, Vicki L. [2 ]
Sofin, R. G. Sumesh [3 ]
Shvets, Igor V. [3 ]
Natelson, Douglas [1 ,4 ]
机构
[1] Rice Univ, Dept Phys & Astron, Houston, TX 77005 USA
[2] Rice Univ, Dept Chem, Houston, TX 77005 USA
[3] Trinity Coll Dublin, Sch Phys, CRANN, Dublin 2, Ireland
[4] Rice Univ, Dept Elect & Comp Engn, Houston, TX 77005 USA
基金
美国国家科学基金会; 爱尔兰科学基金会;
关键词
D O I
10.1038/nmat2084
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Magnetite (Fe3O4), an archetypal transition-metal oxide, has been used for thousands of years, from lodestones in primitive compasses(1) to a candidate material for magnetoelectronic devices(2). In 1939, Verwey(3) found that bulk magnetite undergoes a transition at T-V approximate to 120K from a high-temperature 'bad metal' conducting phase to a low-temperature insulating phase. He suggested(4) that high-temperature conduction is through the fluctuating and correlated valences of the octahedral iron atoms, and that the transition is the onset of charge ordering on cooling. The Verwey transition mechanism and the question of charge ordering remain highly controversial(5-11). Here, we show that magnetite nanocrystals and single-crystal thin films exhibit an electrically driven phase transition below the Verwey temperature. The signature of this transition is the onset of sharp conductance switching in high electric fields, hysteretic in voltage. We demonstrate that this transition is not due to local heating, but instead is due to the breakdown of the correlated insulating state when driven out of equilibrium by electrical bias. We anticipate that further studies of this newly observed transition and its low-temperature conducting phase will shed light on how charge ordering and vibrational degrees of freedom determine the ground state of this important compound.
引用
收藏
页码:130 / 133
页数:4
相关论文
共 28 条
[11]   Metal-insulator transitions [J].
Imada, M ;
Fujimori, A ;
Tokura, Y .
REVIEWS OF MODERN PHYSICS, 1998, 70 (04) :1039-1263
[12]   Electronic structure of charge-ordered Fe3O4 from calculated optical, magneto-optical Kerr effect, and OK-edge x-ray absorption spectra [J].
Leonov, I. ;
Yaresko, A. N. ;
Antonov, V. N. ;
Anisimov, V. I. .
PHYSICAL REVIEW B, 2006, 74 (16)
[13]   The lodestone: History, physics, and formation [J].
Mills, AA .
ANNALS OF SCIENCE, 2004, 61 (03) :273-319
[14]   Resonant X-ray diffraction studies on the charge ordering in magnetite (vol 97, pg 056403, 2006) [J].
Nazarenko, E. ;
Lorenzo, J. E. ;
Joly, Y. ;
Hodeau, J. L. ;
Mannix, D. ;
Marin, C. .
PHYSICAL REVIEW LETTERS, 2007, 98 (08)
[15]   Thermal decomposition of surfactant coatings on Co and Ni nanocrystals [J].
Pérez-Dieste, V ;
Castellini, OM ;
Crain, JN ;
Eriksson, MA ;
Kirakosian, A ;
Lin, JL ;
McChesney, JL ;
Himpsel, FJ ;
Black, CT ;
Murray, CB .
APPLIED PHYSICS LETTERS, 2003, 83 (24) :5053-5055
[16]   Mechanism of the Verwey transition in magnetite [J].
Piekarz, Przemyslaw ;
Parlinski, Krzysztof ;
Oles, Andrzej M. .
PHYSICAL REVIEW LETTERS, 2006, 97 (15)
[17]   Mechanism of the Verwey transition in magnetite: Jahn-Teller distortion and charge ordering patterns [J].
Pinto, H. P. ;
Elliott, S. D. .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2006, 18 (46) :10427-10436
[18]   Origin of the verwey transition in magnetite [J].
Rozenberg, GK ;
Pasternak, MP ;
Xu, WM ;
Amiel, Y ;
Hanfland, M ;
Amboage, M ;
Taylor, RD ;
Jeanloz, R .
PHYSICAL REVIEW LETTERS, 2006, 96 (04)
[19]   Thermal diffusivity of Fe3-xZnxO4 at the Verwey transition [J].
Salazar, A ;
Oleaga, A ;
Wiechec, A ;
Tarnawski, Z ;
Kozlowski, A .
IEEE TRANSACTIONS ON MAGNETICS, 2004, 40 (04) :2820-2822
[20]   Hysteretic current-voltage characteristics and resistance switching at a rectifying Ti/Pr0.7Ca0.3MnO3 interface [J].
Sawa, A ;
Fujii, T ;
Kawasaki, M ;
Tokura, Y .
APPLIED PHYSICS LETTERS, 2004, 85 (18) :4073-4075