Quantum-assisted simulator

被引:37
|
作者
Bharti, Kishor [1 ]
Haug, Tobias [1 ]
机构
[1] Natl Univ Singapore, Ctr Quantum Technol, Singapore 117543, Singapore
基金
新加坡国家研究基金会;
关键词
All Open Access; Green;
D O I
10.1103/PhysRevA.104.042418
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Quantum simulation can help us study poorly understood topics such as high-temperature superconductivity and drug design. However, existing quantum simulation algorithms for current quantum computers often have drawbacks that impede their application. Here, we provide a hybrid quantum-classical algorithm for simulating the dynamics of quantum systems. Our approach takes the ansatz wave function as a linear combination of quantum states. The quantum states are fixed, and the combination parameters are variationally adjusted. Unlike existing variational quantum simulation algorithms, our algorithm does not require any classical-quantum feedback loop and by construction bypasses the barren plateau problem. Moreover, our algorithm does not require any complicated measurements such as the Hadamard test. The entire framework is compatible with existing experimental capabilities and thus can be implemented immediately.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Quantum-assisted photoelectric gain effects in perovskite solar cells
    Ying-Chiao Wang
    Shao-Ku Huang
    Toshihiro Nakamura
    Yu-Ting Kao
    Chun-Hao Chiang
    Di-Yan Wang
    Yuan Jay Chang
    Nobuyoshi Koshida
    Toshikazu Shimada
    Shihao Liu
    Chun-Wei Chen
    Kazuhito Tsukagoshi
    NPG Asia Materials, 2020, 12
  • [32] Quantum-assisted associative adversarial network: applying quantum annealing in deep learning
    Max Wilson
    Thomas Vandal
    Tad Hogg
    Eleanor G. Rieffel
    Quantum Machine Intelligence, 2021, 3
  • [33] Quantum-assisted associative adversarial network: applying quantum annealing in deep learning
    Wilson, Max
    Vandal, Thomas
    Hogg, Tad
    Rieffel, Eleanor G.
    QUANTUM MACHINE INTELLIGENCE, 2021, 3 (01)
  • [34] Quantum-assisted photoelectric gain effects in perovskite solar cells
    Wang, Ying-Chiao
    Huang, Shao-Ku
    Nakamura, Toshihiro
    Kao, Yu-Ting
    Chiang, Chun-Hao
    Wang, Di-Yan
    Chang, Yuan Jay
    Koshida, Nobuyoshi
    Shimada, Toshikazu
    Liu, Shihao
    Chen, Chun-Wei
    Tsukagoshi, Kazuhito
    NPG ASIA MATERIALS, 2020, 12 (01)
  • [35] Quantum-Assisted Hierarchical Fuzzy Neural Network for Image Classification
    Wu, Shengyao
    Li, Runze
    Song, Yanqi
    Qin, Sujuan
    Wen, Qiaoyan
    Gao, Fei
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2025, 33 (01) : 491 - 502
  • [36] Quantum-assisted Hilbert-space Gaussian process regression
    Farooq, Ahmad
    Galvis-Florez, Cristian A.
    Sarkka, Simo
    PHYSICAL REVIEW A, 2024, 109 (05)
  • [37] Quantum-assisted distortion-free audio signal sensing
    Zhang, Chen
    Dasari, Durga
    Widmann, Matthias
    Meinel, Jonas
    Vorobyov, Vadim
    Kapitanova, Polina
    Nenasheva, Elizaveta
    Nakamura, Kazuo
    Sumiya, Hitoshi
    Onoda, Shinobu
    Isoya, Junichi
    Wrachtrup, Joerg
    NATURE COMMUNICATIONS, 2022, 13 (01)
  • [38] The QQUIC Transport Protocol: Quantum-Assisted UDP Internet Connections
    Yan, Peng
    Yu, Nengkun
    ENTROPY, 2022, 24 (10)
  • [39] High-Dimensional Similarity Search with Quantum-Assisted Variational Autoencoder
    Gao, Nicholas
    Wilson, Max
    Vandal, Thomas
    Vinci, Walter
    Nemani, Ramakrishna
    Rieffel, Eleanor
    KDD '20: PROCEEDINGS OF THE 26TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, 2020, : 956 - 964
  • [40] Generalized quantum assisted simulator
    Haug, Tobias
    Bharti, Kishor
    QUANTUM SCIENCE AND TECHNOLOGY, 2022, 7 (04)