Doubly synchronous binary asteroid mass parameter observability

被引:32
|
作者
Davis, Alex B. [1 ]
Scheeres, Daniel J. [1 ]
机构
[1] Univ Colorado, Dept Aerosp Engn Sci, Boulder, CO 80309 USA
基金
美国国家科学基金会;
关键词
Asteroids; dynamics; rotation; Satellites of asteroids; RELATIVE EQUILIBRIA; BODY PROBLEM; BODIES; GRAVITY; SHAPE;
D O I
10.1016/j.icarus.2019.113439
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The full two-body problem (F2BP) is often used to model binary asteroid systems, representing the bodies as two finite mass distributions whose dynamics are influenced by their mutual gravity potential. The emergent behavior of the F2BP is highly coupled translational and rotational mutual motion of the mass distributions. A large fraction of characterized binary asteroids appear to be at, or near, the doubly synchronous equilibrium, which occurs when both bodies are tidally-locked and in a circular co-orbit. Stable oscillations about this equilibrium can be shown, for the nonplanar system, to be combinations of seven fundamental frequencies of the system and the mutual orbit rate. The fundamental frequencies arise as the linear periods of center manifolds identified about the equilibrium which are heavily influenced by each body's mass parameters. We leverage these eight dynamical constraints to investigate the observability of binary asteroid mass parameters via dynamical observations. This is accomplished by deriving a relationship between the fundamental frequencies and mass parameters for doubly synchronous systems. This relationship allows us to show the sensitivity of the dynamics to changes in the mass parameters, first for the planar dynamics, and then for the nonplanar dynamics. In so doing we are able to predict the idealized estimation covariance of the mass parameters based on observation quality. We can also define idealized observation accuracies for desired mass parameter certainties. We apply these tools to 617 Patroclus, a doubly synchronous Trojan binary and flyby target of the LUCY mission, as well as the Pluto and Charon system in order to predict mutual behaviors of these doubly synchronous systems and to provide observational requirements for their mass parameters.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] Attitude instability of the secondary in the synchronous binary asteroid
    Tan, Pan
    Wang, Hai-shuo
    Hou, Xi-yun
    ICARUS, 2023, 390
  • [2] On the secondary's rotation in a synchronous binary asteroid
    Wang, H. S.
    Hou, X. Y.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2020, 493 (01) : 171 - 183
  • [3] Analysis of equilibria in the doubly synchronous binary asteroid systems concerned with non-spherical shape
    Li, Xiangyu
    Qiao, Dong
    Barucci, M.A.
    Astrodynamics, 2018, 2 (02) : 133 - 146
  • [4] Energy dissipation in synchronous binary asteroids
    Meyer, Alex J.
    Scheeres, Daniel J.
    Agrusa, Harrison F.
    Noiset, Guillaume
    McMahon, Jay
    Karatekin, Ozgur
    Hirabayashi, Masatoshi
    Nakano, Ryota
    ICARUS, 2023, 391
  • [5] Break-up of the synchronous state of binary asteroid systems
    Wang, Hai-Shuo
    Hou, Xi-Yun
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2021, 505 (04) : 6037 - 6050
  • [6] New insights on the binary Asteroid 121 Hermione
    Descamps, P.
    Marchis, F.
    Durech, J.
    Emery, J.
    Harris, A. W.
    Kaasalainen, M.
    Berthier, J.
    Teng-Chuen-Yu, J. -P.
    Peyrot, A.
    Hutton, L.
    Greene, J.
    Pollock, J.
    Assafin, M.
    Vieira-Martinsi, R.
    Camargo, J. I. B.
    Braga-Ribas, F.
    Vachier, F.
    Reichart, D. E.
    Ivarsen, K. M.
    Crain, J. A.
    Nysewander, M. C.
    Lacluyze, A. P.
    Haislip, J. B.
    Behrend, R.
    Colas, F.
    Lecacheux, J.
    Bernasconi, L.
    Roy, R.
    Baudouin, P.
    Brunetto, L.
    Sposetti, S.
    Manzini, F.
    ICARUS, 2009, 203 (01) : 88 - 101
  • [7] Tidal end states of binary asteroid systems with a nonspherical component
    Taylor, Patrick A.
    Margot, Jean-Luc
    ICARUS, 2014, 229 : 418 - 422
  • [8] The small binary asteroid (939) Isberga
    Carry, B.
    Matter, A.
    Scheirich, P.
    Pravec, P.
    Molnar, L.
    Mottola, S.
    Carbognani, A.
    Jehin, E.
    Marciniak, A.
    Binzel, R. P.
    DeMeo, F. E.
    Birlan, M.
    Delbo, M.
    Barbotin, E.
    Behrend, R.
    Bonnardeau, M.
    Colas, F.
    Farissier, P.
    Fauvaud, M.
    Fauvaud, S.
    Gillier, C.
    Gillon, M.
    Hellmich, S.
    Hirsch, R.
    Leroy, A.
    Manfroid, J.
    Montier, J.
    Morelle, E.
    Richard, F.
    Sobkowiak, K.
    Strajnic, J.
    Vachier, F.
    ICARUS, 2015, 248 : 516 - 525
  • [9] Binary asteroid systems: Tidal end states and estimates of material properties
    Taylor, Patrick A.
    Margot, Jean-Luc
    ICARUS, 2011, 212 (02) : 661 - 676
  • [10] Binary asteroid population. 3. Secondary rotations and elongations
    Pravec, P.
    Scheirich, P.
    Kusnirak, P.
    Hornoch, K.
    Galad, A.
    Naidu, S. P.
    Pray, D. P.
    Vilagi, J.
    Gajdos, S.
    Kornos, L.
    Krugly, Yu. N.
    Cooney, W. R.
    Gross, J.
    Terrell, D.
    Gaftonyuk, N.
    Pollock, J.
    Husarik, M.
    Chiorny, V.
    Stephens, R. D.
    Durkee, R.
    Reddy, V.
    Dyvig, R.
    Vrastil, J.
    Zizka, J.
    Mottola, S.
    Hellmich, S.
    Oey, J.
    Benishek, V.
    Kryszczynska, A.
    Higgins, D.
    Ries, J.
    Marchis, F.
    Baek, M.
    Macomber, B.
    Inasaridze, R.
    Kvaratskhelia, O.
    Ayvazian, V.
    Rumyantsev, V.
    Masi, G.
    Colas, F.
    Lecacheux, J.
    Montaigut, R.
    Leroy, A.
    Brown, P.
    Krzeminski, Z.
    Molotov, I.
    Reichart, D.
    Haislip, J.
    LaCluyze, A.
    ICARUS, 2016, 267 : 267 - 295