Characterizing spheres and Euclidean spaces by conformal vector fields

被引:31
作者
Deshmukh, Sharief [1 ]
机构
[1] King Saud Univ, Dept Math, Coll Sci, POB 2455, Riyadh 11451, Saudi Arabia
关键词
Conformal vector fields; Ricci curvature; Scalar curvature; Obata's theorem; Laplace operator; RIEMANNIAN MANIFOLD; DIFFERENTIAL-EQUATIONS;
D O I
10.1007/s10231-017-0657-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
It is well known that the Euclidean space , the n-sphere of constant curvature c are examples of spaces admitting many conformal vector fields, and therefore conformal vector fields are used in obtaining characterizations of these spaces. In this paper, we use nontrivial conformal vector fields on a compact and connected Riemannian manifold to characterize the sphere . Also, we use a nontrivial conformal vector field on a complete and connected Riemannian manifold and find characterizations for a Euclidean space and the sphere .
引用
收藏
页码:2135 / 2145
页数:11
相关论文
共 21 条
[1]  
Alsolamy, 2008, C MATH, V112, P157, DOI DOI 10.4064/cm112-1-8
[2]  
[Anonymous], 1969, J. Differ. Geom., DOI DOI 10.4310/JDG/1214429058
[3]  
[Anonymous], 2010, Ann. Univ. Ferrara, DOI DOI 10.1007/S11565-010-0101-5
[4]  
Besse A. L., 2007, EINSTEIN MANIFOLDS
[5]  
BLAIR DE, 1975, J MATH SOC JPN, V27, P9
[6]  
Chavel I., 1984, EIGENVALUES RIEMANNI
[7]   Curvature bounds for the spectrum of a compact Riemannian manifold of constant scalar curvature [J].
Deshmukh, S ;
Al-Eid, A .
JOURNAL OF GEOMETRIC ANALYSIS, 2005, 15 (04) :589-606
[8]  
Deshmukh S., 2011, ANN U FERRARA, V57, P17
[9]   A NOTE ON CONFORMAL VECTOR FIELDS ON A RIEMANNIAN MANIFOLD [J].
Deshmukh, Sharief ;
Al-Solamy, Falleh .
COLLOQUIUM MATHEMATICUM, 2014, 136 (01) :65-73
[10]  
Deshmukh S, 2014, BALK J GEOM APPL, V19, P86