Synthesis, characterization and spectroscopic investigation of new tetrakis(acetylacetonato)thulate(III) complexes containing alkaline metals as countercations

被引:24
作者
Guedes, M. A. [1 ]
Paolini, T. B. [1 ]
Felinto, M. C. F. C. [2 ]
Kai, J. [1 ,2 ]
Nunes, L. A. O. [3 ]
Malta, O. L. [4 ]
Brito, H. F. [1 ]
机构
[1] Univ Sao Paulo, Inst Quim, BR-05508000 Sao Paulo, Brazil
[2] IPEN CNEN SP, BR-05508000 Sao Paulo, Brazil
[3] Univ Sao Paulo, Inst Fis Sao Carlos, BR-13566590 Sao Carlos, SP, Brazil
[4] Univ Fed Pernambuco, Dept Quim Fundamental, CCEN, BR-50590470 Recife, PE, Brazil
基金
巴西圣保罗研究基金会;
关键词
Thulium; Acetylacetonate; Tetrakis complexes; Photoluminescence; Blue emission; PHOTOLUMINESCENCE PROPERTIES; ENERGY-LEVELS; LUMINESCENT;
D O I
10.1016/j.jlumin.2010.09.006
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In this work a series of tetrakis complexes C[Tm(acac)(4)] where C+ = Li+ Na+ and K+ countercations and acac = acetylacetonate ligand were synthesized and characterized for photoluminescence investigation The relevant aspect is that these complexes are water-free in the first coordination sphere The emission spectra of the tetrakis Tm3+-complexes present narrow bands characteristic of the (1)G(4)-> H-3(6) (479 nm) (1)G(4)-> F-3(4) (650 nm) and (1)G(4) -> H-3(5) (779 nm) transitions of the Tm3+ ion with the blue emission color at 479 nm as the most prominent one The lifetime values (tau) of the emitting (1)G(4) level of the C[Tm(acac)(4)] complexes were 344 360 and 400 ns for the Li+ Na+ and K+ countercations respectively showing an increasing linear behavior versus the ionic radius of the alkaline ion An efficient intramolecular energy transfer process from the triplet state (T) of the ligands to the emitting (1)G(4) state of the Tm3+ ion is observed This fact together with the absence of water molecules in first coordination sphere allows these tetrakis Tm3+-complexes to act as efficient blue light conversion molecular devices (c) 2010 Elsevier B V All rights reserved
引用
收藏
页码:99 / 103
页数:5
相关论文
共 32 条
[1]  
Binnemans K, 2005, HBK PHYS CHEM RARE, V35, P107, DOI 10.1016/S0168-1273(05)35003-3
[2]  
Brito H., 2009, LUMINESCENCE PHENOM, V1, P131
[3]   Structural and Photoluminescence Studies of a Europium(III) Tetrakis (β-diketonate) Complex with Tetrabutylammonium, Imidazolium, Pyridinium and Silica-Supported Imidazolium Counterions [J].
Bruno, Sofia M. ;
Ferreira, Rute A. S. ;
Paz, Filipe A. Almeida ;
Carlos, Luis D. ;
Pillinger, Martyn ;
Ribeiro-Claro, Paulo ;
Goncalves, Isabel S. .
INORGANIC CHEMISTRY, 2009, 48 (11) :4882-4895
[4]  
Carlos LD, 2000, ADV MATER, V12, P594, DOI 10.1002/(SICI)1521-4095(200004)12:8<594::AID-ADMA594>3.3.CO
[5]  
2-J
[6]   ABSORPTION SPECTRUM OF TM3+-LAF3 [J].
CARNALL, WT ;
FIELDS, PR ;
MORRISON, J ;
SARUP, R .
JOURNAL OF CHEMICAL PHYSICS, 1970, 52 (08) :4054-&
[7]  
CARNALL WT, 1988, 8808 ANL
[8]   Spectroscopic properties and design of highly luminescent lanthanide coordination complexes [J].
de Sá, GF ;
Malta, OL ;
Donegá, CD ;
Simas, AM ;
Longo, RL ;
Santa-Cruz, PA ;
da Silva, EF .
COORDINATION CHEMISTRY REVIEWS, 2000, 196 :165-195
[9]   Dispersible Tm3+-doped nanoparticles that exhibit strong 1.47 μm photoluminescence [J].
Diamente, Peter R. ;
Raudsepp, Mati ;
van Veggel, Frank C. J. M. .
ADVANCED FUNCTIONAL MATERIALS, 2007, 17 (03) :363-368
[10]   Lanthanide luminescence for functional materials and bio-sciences [J].
Eliseeva, Svetlana V. ;
Buenzli, Jean-Claude G. .
CHEMICAL SOCIETY REVIEWS, 2010, 39 (01) :189-227