INFLUENCE OF MODEL PARAMETER UNCERTAINTIES ON FORECASTED SUBSIDENCE

被引:15
|
作者
Gruszczynski, Wojciech [1 ]
Niedojadlo, Zygmunt [1 ]
Mrochen, Dawid [1 ]
机构
[1] AGH Univ Sci & Technol, Fac Min Surveying & Environm Engn, Al Mickiewicza 30, PL-30059 Krakow, Poland
来源
ACTA GEODYNAMICA ET GEOMATERIALIA | 2018年 / 15卷 / 03期
关键词
Mining deformation forecasting; Uncertainty propagation; INSAR TIME-SERIES; ARTIFICIAL NEURAL-NETWORKS; MINING SUBSIDENCE; LAND SUBSIDENCE; PREDICTIVE METHODOLOGY; SURFACE SUBSIDENCE; GROUND SUBSIDENCE; DEFORMATION; STRAIN; GPS;
D O I
10.13168/AGG.2018.0016
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Surface deformation due to underground exploitation affects the safety of overlying structures. Forecasting can predict risks to surface structures and facilitates actions designed to improve their resilience and reduce the potential impact of mining activities. However, forecasting accuracy is limited. Therefore, in practice, model parameters are determined within a certain margin to ensure that critical values of deformation indicators for surface objects are not exceeded. For economic reasons, it is important to minimize these margins while also ensuring that safety is maintained. One important factor influencing forecasting accuracy is the uncertainty in deformation model parameters used for calculations. Therefore, it is critical to adopt an appropriate methodology for determining and addressing the uncertainties in deformation model parameters used in forecasting. This study presents methods for estimating the Knothe's model parameters needed to forecast surface deformation caused by underground mining and defining the uncertainties in those forecasts. Depending on the parameter uncertainties, one of two methods for propagation is proposed: the Monte Carlo method or the law of propagation of uncertainty. Using this approach, it is possible to account for uncertainty and reduce forecast margins. A case study of hard coal mining in the Upper Silesian Coal Basin region of Poland is presented.
引用
收藏
页码:211 / 228
页数:18
相关论文
共 50 条
  • [11] Analysis of the influence of parameter and scale uncertainties on a local multi-criteria land use evaluation model
    Seda Şalap-Ayça
    Piotr Jankowski
    Stochastic Environmental Research and Risk Assessment, 2018, 32 : 2699 - 2719
  • [12] Analysis of the influence of parameter and scale uncertainties on a local multi-criteria land use evaluation model
    Salap-Ayca, Seda
    Jankowski, Piotr
    STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2018, 32 (09) : 2699 - 2719
  • [13] ROBUST OPTIMIZATION WITH PARAMETER AND MODEL UNCERTAINTIES USING GAUSSIAN PROCESSES
    Zhang, Yanjun
    Li, Mian
    Zhang, Jun
    Li, Guoshu
    PROCEEDINGS OF THE ASME INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, 2016, VOL 2B, 2016, : 573 - 585
  • [14] Bayesian flood frequency analysis in the light of model and parameter uncertainties
    Liang, Zhongmin
    Chang, Wenjuan
    Li, Binquan
    STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2012, 26 (05) : 721 - 730
  • [15] Worst-case parameter estimation with bounded model uncertainties
    Chandrasekaran, S
    Golub, GH
    Gu, M
    Sayed, AH
    PROCEEDINGS OF THE 1997 AMERICAN CONTROL CONFERENCE, VOLS 1-6, 1997, : 171 - 175
  • [16] Robust Optimization With Parameter and Model Uncertainties Using Gaussian Processes
    Zhang, Yanjun
    Li, Mian
    Zhang, Jun
    Li, Guoshu
    JOURNAL OF MECHANICAL DESIGN, 2016, 138 (11)
  • [17] Bayesian flood frequency analysis in the light of model and parameter uncertainties
    Zhongmin Liang
    Wenjuan Chang
    Binquan Li
    Stochastic Environmental Research and Risk Assessment, 2012, 26 : 721 - 730
  • [18] Bayesian Reservoir History Matching Considering Model and Parameter Uncertainties
    A. H. Elsheikh
    M. D. Jackson
    T. C. Laforce
    Mathematical Geosciences, 2012, 44 : 515 - 543
  • [19] Multidisciplinary robust design optimization under parameter and model uncertainties
    Li, Wei
    Gao, Liang
    Xiao, Mi
    ENGINEERING OPTIMIZATION, 2020, 52 (03) : 426 - 445
  • [20] A Monte Carlo Approach to Nuclear Model Parameter Uncertainties Propagation
    De Saint Jean, Cyrille
    Noguere, Gilles
    Habert, Benoit
    Iooss, Bertrand
    NUCLEAR SCIENCE AND ENGINEERING, 2009, 161 (03) : 363 - 370