Fuel Cell ASAP: Two Iterations of an Automated Stack Assembly Process and Ramifications for Fuel Cell Design-for-Manufacture Considerations

被引:9
作者
Laskowski, Christina [1 ]
Derby, Stephen [1 ]
机构
[1] Rensselaer Polytech Inst, Troy, NY 12180 USA
来源
JOURNAL OF FUEL CELL SCIENCE AND TECHNOLOGY | 2011年 / 8卷 / 03期
基金
美国国家科学基金会;
关键词
D O I
10.1115/1.4000684
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Polymer-electrode membrane fuel cell technology, a low-emission power source receiving much attention for its efficiency, will need to progress from low-volume production to high-volume within the course of the next decade. To successfully achieve this transition, significant research progress has already been made toward developing a fully functional fuel cell automatic stack assembly robotic station. Lessons can be drawn from this research with regards to design-for-manufacture (DFM) and design-for-assembly (DFA) considerations of fuel cells; however, more work still remains to be done. This document outlines both iterations of the robotic fuel cell assembly stations, other work to date, DFM and DFA lessons learned, and the anticipated future progression of automatic fuel cell stack assembly stations. Two individual robotic fuel cell assembly stations were constructed, including custom-built end effectors and part feeders. The second station incorporated numerous improvements, including overlapping work envelopes, elimination of a shuttle cart, software synchronization, fewer axes, and a better end effector. Consequentially, the second workcell achieved a fourfold improvement in cycle time over the previous iteration. Future improvements will focus in part upon improving the reliability of the overall system. As the stack assembly workcell continues to improve, research will focus upon the ramifications and interplay of tolerances, stack failure modes, sealing, reliability, and the potential for component redesign specifically to optimize fuel cell manufacturing throughput. [DOI:10.1115/1.4000684]
引用
收藏
页数:8
相关论文
共 9 条
[1]  
*COGN CORP, 2007, DVT VIS SYST PROD GU
[2]  
Derby S., 2005, Design of Automatic Machinery
[3]  
Groover M. P., 2001, AUTOMATION PRODUCTIO
[4]   Simulation of the market penetration of hydrogen fuel cell vehicles in Korea [J].
Jun, Eunju ;
Jeong, Yong Hoon ;
Chang, Soon Heung .
INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2008, 32 (04) :318-327
[5]  
PUFFER R, 2007, FUEL CELL DESIGN MAN
[6]  
PUTTAIAH R, 2006, Patent No. 6989216
[7]  
ROBOTICS KI, 2007, KUKA CAD FILES
[8]  
Slocum A.H., 1992, PRECISION MACHINE DE
[9]  
WHITE C, 2007, PLUG POWER INSTALLS