A MACHINE-LEARNING METHOD TO INFER FUNDAMENTAL STELLAR PARAMETERS FROM PHOTOMETRIC LIGHT CURVES

被引:28
作者
Miller, A. A. [1 ,2 ]
Bloom, J. S. [3 ,4 ]
Richards, J. W. [3 ,5 ]
Lee, Y. S. [6 ]
Starr, D. L. [3 ,5 ]
Butler, N. R. [7 ]
Tokarz, S. [8 ]
Smith, N. [9 ]
Eisner, J. A. [9 ]
机构
[1] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA
[2] CALTECH, Pasadena, CA 91125 USA
[3] Univ Calif Berkeley, Dept Astron, Berkeley, CA 94720 USA
[4] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Phys, Berkeley, CA 94720 USA
[5] Wise Io, Berkeley, CA 94704 USA
[6] Chungnam Natl Univ, Dept Astron & Space Sci, Taejon 305764, South Korea
[7] Arizona State Univ, Sch Earth & Space Explorat, Tempe, AZ 85281 USA
[8] Smithsonian Astrophys Observ, Cambridge, MA 02138 USA
[9] Univ Arizona, Steward Observ, Tucson, AZ 85721 USA
关键词
methods: data analysis; methods: statistical; stars: general; stars: statistics; stars: variables: general; surveys; DIGITAL SKY SURVEY; AUTOMATED SUPERVISED CLASSIFICATION; HIGH-RESOLUTION SPECTROSCOPY; VARIABLE-STARS; RANDOM FORESTS; CATALOG; SELECTION; BIAS; II;
D O I
10.1088/0004-637X/798/2/122
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
A fundamental challenge for wide-field imaging surveys is obtaining follow-up spectroscopic observations: there are >10(9) photometrically cataloged sources, yet modern spectroscopic surveys are limited to similar to fewx10(6) targets. As we approach the Large Synoptic Survey Telescope era, new algorithmic solutions are required to cope with the data deluge. Here we report the development of a machine-learning framework capable of inferring fundamental stellar parameters (T-eff, log g, and [Fe/H]) using photometric-brightness variations and color alone. A training set is constructed from a systematic spectroscopic survey of variables with Hectospec/ Multi-Mirror Telescope. In sum, the training set includes similar to 9000 spectra, for which stellar parameters are measured using the SEGUE Stellar Parameters Pipeline (SSPP). We employed the random forest algorithm to perform a non-parametric regression that predicts Teff, log g, and [Fe/H] from photometric time-domain observations. Our final optimized model produces a cross-validated rms error (RMSE) of 165 K, 0.39 dex, and 0.33 dex for T-eff, log g, and [Fe/H], respectively. Examining the subset of sources for which the SSPP measurements are most reliable, the RMSE reduces to 125 K, 0.37 dex, and 0.27 dex, respectively, comparable to what is achievable via low-resolution spectroscopy. For variable stars this represents a approximate to 12%-20% improvement in RMSE relative to models trained with single-epoch photometric colors. As an application of our method, we estimate stellar parameters for similar to 54,000 known variables. We argue that this method may convert photometric time-domain surveys into pseudo-spectrographic engines, enabling the construction of extremely detailed maps of the Milky Way, its structure, and history.
引用
收藏
页数:17
相关论文
共 56 条
[1]  
[Anonymous], 2019, ASTROPHYS J
[2]   HIGH-RESOLUTION SPECTROSCOPY OF EXTREMELY METAL-POOR STARS FROM SDSS/SEGUE. I. ATMOSPHERIC PARAMETERS AND CHEMICAL COMPOSITIONS [J].
Aoki, Wako ;
Beers, Timothy C. ;
Lee, Young Sun ;
Honda, Satoshi ;
Ito, Hiroko ;
Takada-Hidai, Masahide ;
Frebel, Anna ;
Suda, Takuma ;
Fujimoto, Masayuki Y. ;
Carollo, Daniela ;
Sivarani, Thirupathi .
ASTRONOMICAL JOURNAL, 2013, 145 (01)
[3]   PHOTOMETRIC VARIABILITY IN KEPLER TARGET STARS. II. AN OVERVIEW OF AMPLITUDE, PERIODICITY, AND ROTATION IN FIRST QUARTER DATA [J].
Basri, Gibor ;
Walkowicz, Lucianne M. ;
Batalha, Natalie ;
Gilliland, Ronald L. ;
Jenkins, Jon ;
Borucki, William J. ;
Koch, David ;
Caldwell, Doug ;
Dupree, Andrea K. ;
Latham, David W. ;
Marcy, Geoffrey W. ;
Meibom, Soeren ;
Brown, Tim .
ASTRONOMICAL JOURNAL, 2011, 141 (01)
[4]   An observational correlation between stellar brightness variations and surface gravity [J].
Bastien, Fabienne A. ;
Stassun, Keivan G. ;
Basri, Gibor ;
Pepper, Joshua .
NATURE, 2013, 500 (7463) :427-430
[5]   Kepler Planet-Detection Mission: Introduction and First Results [J].
Borucki, William J. ;
Koch, David ;
Basri, Gibor ;
Batalha, Natalie ;
Brown, Timothy ;
Caldwell, Douglas ;
Caldwell, John ;
Christensen-Dalsgaard, Jorgen ;
Cochran, William D. ;
DeVore, Edna ;
Dunham, Edward W. ;
Dupree, Andrea K. ;
Gautier, Thomas N., III ;
Geary, John C. ;
Gilliland, Ronald ;
Gould, Alan ;
Howell, Steve B. ;
Jenkins, Jon M. ;
Kondo, Yoji ;
Latham, David W. ;
Marcy, Geoffrey W. ;
Meibom, Soren ;
Kjeldsen, Hans ;
Lissauer, Jack J. ;
Monet, David G. ;
Morrison, David ;
Sasselov, Dimitar ;
Tarter, Jill ;
Boss, Alan ;
Brownlee, Don ;
Owen, Toby ;
Buzasi, Derek ;
Charbonneau, David ;
Doyle, Laurance ;
Fortney, Jonathan ;
Ford, Eric B. ;
Holman, Matthew J. ;
Seager, Sara ;
Steffen, Jason H. ;
Welsh, William F. ;
Rowe, Jason ;
Anderson, Howard ;
Buchhave, Lars ;
Ciardi, David ;
Walkowicz, Lucianne ;
Sherry, William ;
Horch, Elliott ;
Isaacson, Howard ;
Everett, Mark E. ;
Fischer, Debra .
SCIENCE, 2010, 327 (5968) :977-980
[6]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32
[7]   Using machine learning for discovery in synoptic survey imaging data [J].
Brink, Henrik ;
Richards, Joseph W. ;
Poznanski, Dovi ;
Bloom, Joshua S. ;
Rice, John ;
Negahban, Sahand ;
Wainwright, Martin .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2013, 435 (02) :1047-1060
[8]   KEPLER INPUT CATALOG: PHOTOMETRIC CALIBRATION AND STELLAR CLASSIFICATION [J].
Brown, Timothy M. ;
Latham, David W. ;
Everett, Mark E. ;
Esquerdo, Gilbert A. .
ASTRONOMICAL JOURNAL, 2011, 142 (04)
[9]   OPTIMAL TIME-SERIES SELECTION OF QUASARS [J].
Butler, Nathaniel R. ;
Bloom, Joshua S. .
ASTRONOMICAL JOURNAL, 2011, 141 (03)
[10]   Automated supervised classification of variable stars - I. methodology [J].
Debosscher, J. ;
Sarro, L. M. ;
Aerts, C. ;
Cuypers, J. ;
Vandenbussche, B. ;
Garrido, R. ;
Solano, E. .
ASTRONOMY & ASTROPHYSICS, 2007, 475 (03) :1159-1183