Invariance of decay rate with respect to boundary conditions in thermoelastic Timoshenko systems

被引:22
作者
Alves, M. S. [1 ]
Jorge Silva, M. A. [2 ]
Ma, T. F. [3 ]
Munoz Rivera, J. E. [4 ,5 ]
机构
[1] Univ Fed Vicosa, Dept Math, BR-36570000 Vicosa, MG, Brazil
[2] Univ Estadual Londrina, Dept Math, BR-86057970 Londrina, PR, Brazil
[3] Univ Sao Paulo, Inst Math & Comp Sci, BR-13566590 Sao Carlos, SP, Brazil
[4] Natl Lab Sci Computat, BR-25651070 Petropolis, RJ, Brazil
[5] Univ Fed Rio de Janeiro, Inst Math, BR-21941909 Rio De Janeiro, RJ, Brazil
来源
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK | 2016年 / 67卷 / 03期
基金
巴西圣保罗研究基金会;
关键词
Timoshenko systems; Thermoelastic systems; Exponential stability; Polynomial stability; ENERGY DECAY; EXPONENTIAL STABILITY; GLOBAL EXISTENCE; BRESSE SYSTEM; BEAM; STABILIZATION; CATTANEO; FOURIER; MEMORY; LAW;
D O I
10.1007/s00033-016-0662-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is mainly concerned with the polynomial stability of a thermoelastic Timoshenko system recently introduced by Almeida Junior et al. (Z Angew Math Phys 65(6):1233-1249, 2014) that proved, in the general case when equal wave speeds are not assumed, different polynomial decay rates depending on the boundary conditions, namely, optimal rate t(-1/2) for mixed Dirichlet-Neumann boundary condition and rate t(-1/4) for full Dirichlet boundary condition. Here, our main achievement is to prove the same polynomial decay rate t(-1/2) (corresponding to the optimal one) independently of the boundary conditions, which improves the existing literature on the subject. As a complementary result, we also prove that the system is exponentially stable under equal wave speeds assumption. The technique employed here can probably be applied to other kind of thermoelastic systems.
引用
收藏
页数:16
相关论文
共 28 条
[1]   Stability to weakly dissipative Timoshenko systems [J].
Almeida Junior, D. S. ;
Santos, M. L. ;
Munoz Rivera, J. E. .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2013, 36 (14) :1965-1976
[2]   Stability to 1-D thermoelastic Timoshenko beam acting on shear force [J].
Almeida Junior, Dilberto da S. ;
Santos, M. L. ;
Munoz Rivera, J. E. .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2014, 65 (06) :1233-1249
[3]  
Alves M.M., PREPRINT
[4]   Energy decay for Timoshenko systems of memory type [J].
Ammar-Khodja, F ;
Benabdallah, A ;
Rivera, JEM ;
Racke, R .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2003, 194 (01) :82-115
[5]   Stabilization of the nonuniform Timoshenko beam [J].
Ammar-Khodja, Farid ;
Kerbal, Sebti ;
Soufyane, Abdelaziz .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 327 (01) :525-538
[6]  
[Anonymous], 1955, VIBRATIONS PROBLEMS
[7]   Optimal polynomial decay of functions and operator semigroups [J].
Borichev, Alexander ;
Tomilov, Yuri .
MATHEMATISCHE ANNALEN, 2010, 347 (02) :455-478
[8]   Timoshenko systems with fading memory [J].
Conti, Monica ;
Dell'Oro, Filippo ;
Pata, Vittorino .
DYNAMICS OF PARTIAL DIFFERENTIAL EQUATIONS, 2013, 10 (04) :367-377
[9]   On the stability of Timoshenko systems with Gurtin-Pipkin thermal law [J].
Dell' Oro, Filippo ;
Pata, Vittorino .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2014, 257 (02) :523-548
[10]   Energy decay to Timoshenko's system with thermoelasticity of type III [J].
Fatori, L. H. ;
Munoz Rivera, J. E. ;
Monteiro, R. Nunes .
ASYMPTOTIC ANALYSIS, 2014, 86 (3-4) :227-247