Multi-Modal Neuroimaging Neural Network-Based Feature Detection for Diagnosis of Alzheimer's Disease

被引:13
作者
Meng, Xianglian [1 ]
Liu, Junlong [1 ]
Fan, Xiang [1 ]
Bian, Chenyuan [2 ]
Wei, Qingpeng [1 ]
Wang, Ziwei [1 ]
Liu, Wenjie [1 ]
Jiao, Zhuqing [3 ]
机构
[1] Changzhou Inst Technol, Sch Comp Informat & Engn, Changzhou, Peoples R China
[2] Qingdao Univ, Shandong Prov Key Lab Digital Med & Comp Assisted, Affiliated Hosp, Qingdao, Peoples R China
[3] Changzhou Univ, Sch Comp Sci & Artificial Intelligence, Changzhou, Peoples R China
基金
中国国家自然科学基金;
关键词
multi-modal; LassoNet; resting state functional magnetic resonance imaging; diffusion tensor imaging; feature detection; MILD COGNITIVE IMPAIRMENT; MRI; CLASSIFICATION; HIPPOCAMPUS;
D O I
10.3389/fnagi.2022.911220
中图分类号
R592 [老年病学]; C [社会科学总论];
学科分类号
03 ; 0303 ; 100203 ;
摘要
Alzheimer's disease (AD) is a neurodegenerative brain disease, and it is challenging to mine features that distinguish AD and healthy control (HC) from multiple datasets. Brain network modeling technology in AD using single-modal images often lacks supplementary information regarding multi-source resolution and has poor spatiotemporal sensitivity. In this study, we proposed a novel multi-modal LassoNet framework with a neural network for AD-related feature detection and classification. Specifically, data including two modalities of resting-state functional magnetic resonance imaging (rs-fMRI) and diffusion tensor imaging (DTI) were adopted for predicting pathological brain areas related to AD. The results of 10 repeated experiments and validation experiments in three groups prove that our proposed framework outperforms well in classification performance, generalization, and reproducibility. Also, we found discriminative brain regions, such as Hippocampus, Frontal_Inf_Orb_L, Parietal_Sup_L, Putamen_L, Fusiform_R, etc. These discoveries provide a novel method for AD research, and the experimental study demonstrates that the framework will further improve our understanding of the mechanisms underlying the development of AD.
引用
收藏
页数:11
相关论文
共 55 条
[1]   PANDA: Predicting the change in proteins binding affinity upon mutations by finding a signal in primary structures [J].
Abbasi, Wajid Arshad ;
Abbas, Syed Ali ;
Andleeb, Saiqa .
JOURNAL OF BIOINFORMATICS AND COMPUTATIONAL BIOLOGY, 2021, 19 (04)
[2]   Improving Alzheimer's stage categorization with Convolutional Neural Network using transfer learning and different magnetic resonance imaging modalities [J].
Aderghal, Karim ;
Afdel, Karim ;
Benois-Pineau, Jenny ;
Catheline, Gwenaelle .
HELIYON, 2020, 6 (12)
[3]   LassoNet: Deep Lasso-Selection of 3D Point Clouds [J].
Chen, Zhutian ;
Zeng, Wei ;
Yang, Zhiguang ;
Yu, Lingyun ;
Fu, Chi-Wing ;
Qu, Huamin .
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2020, 26 (01) :195-204
[4]   Posterior cingulate cortex atrophy and regional cingulum disruption in mild cognitive impairment and Alzheimer's disease [J].
Choo, Il Han ;
Lee, Dong Young ;
Oh, Jungsu S. ;
Lee, Jae Sung ;
Lee, Dong Soo ;
Song, In Chan ;
Youn, Jong Choul ;
Kim, Shin Gyeom ;
Kim, Ki Woong ;
Jhoo, Jin Hyeong ;
Woo, Jong Inn .
NEUROBIOLOGY OF AGING, 2010, 31 (05) :772-779
[5]   Associations of quantitative susceptibility mapping with Alzheimer's disease clinical and imaging markers [J].
Cogswell, Petrice M. ;
Wiste, Heather J. ;
Senjem, Matthew L. ;
Gunter, Jeffrey L. ;
Weigand, Stephen D. ;
Schwarz, Christopher G. ;
Arani, Arvin ;
Therneau, Terry M. ;
Lowe, Val J. ;
Knopman, David S. ;
Botha, Hugo ;
Graff-Radford, Jonathan ;
Jones, David T. ;
Kantarci, Kejal ;
Vemuri, Prashanthi ;
Boeve, Bradley F. ;
Mielke, Michelle M. ;
Petersen, Ronald C. ;
Jack, Clifford R., Jr. .
NEUROIMAGE, 2021, 224
[6]   Disrupted structural and functional brain networks in Alzheimer's disease [J].
Dai, Zhengjia ;
Lin, Qixiang ;
Li, Tao ;
Wang, Xiao ;
Yuan, Huishu ;
Yu, Xin ;
He, Yong ;
Wang, Huali .
NEUROBIOLOGY OF AGING, 2019, 75 :71-82
[7]   Estimating Alzheimer's Disease Progression Rates from Normal Cognition Through Mild Cognitive Impairment and Stages of Dementia [J].
Davis, Matthew ;
O'Connell, Thomas ;
Johnson, Scott ;
Cline, Stephanie ;
Merikle, Elizabeth ;
Martenyi, Ferenc ;
Simpson, Kit .
CURRENT ALZHEIMER RESEARCH, 2018, 15 (08) :777-788
[8]   DTI measures in crossing-fibre areas: Increased diffusion anisotropy reveals early white matter alteration in MCI and mild Alzheimer's disease [J].
Douaud, Gwenaelle ;
Jbabdi, Saad ;
Behrens, Timothy E. J. ;
Menke, Ricarda A. ;
Gass, Achim ;
Monsch, Andreas U. ;
Rao, Anil ;
Whitcher, Brandon ;
Kindlmann, Gordon ;
Matthews, Paul M. ;
Smith, Stephen .
NEUROIMAGE, 2011, 55 (03) :880-890
[9]   Multimodal Analysis of Functional and Structural Disconnection in Alzheimer's Disease Using Multiple Kernel SVM [J].
Dyrba, Martin ;
Grothe, Michel ;
Kirste, Thomas ;
Teipel, Stefan J. .
HUMAN BRAIN MAPPING, 2015, 36 (06) :2118-2131
[10]   Neurogenesis in the adult hippocampus: history, regulation, and prospective roles [J].
Fares, Jawad ;
Diab, Zeina Bou ;
Nabha, Sanaa ;
Fares, Youssef .
INTERNATIONAL JOURNAL OF NEUROSCIENCE, 2019, 129 (06) :598-611