Small eigenvalues of the Conformal Laplacian

被引:9
|
作者
Bär, C
Dahl, M
机构
[1] Univ Hamburg, FB Math, D-20146 Hamburg, Germany
[2] Inst Matemat, S-10044 Stockholm, Sweden
关键词
D O I
10.1007/s00039-003-0419-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce a differential topological invariant for compact differentiable manifolds by counting the small eigenvalues of the Conformal Laplace operator. This invariant vanishes if and only if the manifold has a metric of positive scalar curvature. We show that the invariant does not increase under surgery of codimension at least three and we give lower and upper bounds in terms of the alpha-genus.
引用
收藏
页码:483 / 508
页数:26
相关论文
共 50 条
  • [1] Small eigenvalues of the conformal Laplacian
    Christian Bär
    Mattias Dahl
    Geometric & Functional Analysis GAFA, 2003, 13 : 483 - 508
  • [2] NEGATIVE EIGENVALUES OF THE CONFORMAL LAPLACIAN
    Henry, Guillermo
    Petean, Jimmy
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2024, 152 (07) : 3085 - 3096
  • [3] Zero and negative eigenvalues of the conformal Laplacian
    Gover, A. Rod
    Hassannezhad, Asma
    Jakobson, Dmitry
    Levitin, Michael
    JOURNAL OF SPECTRAL THEORY, 2016, 6 (04) : 793 - 806
  • [4] Extremal eigenvalues of the laplacian in a conformal class of metrics: The 'conformal spectrum'
    Colbois, B
    El Soufi, A
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2003, 24 (04) : 337 - 349
  • [5] Extremal Eigenvalues of the Laplacian in a Conformal Class of Metrics: The `Conformal Spectrum'
    Bruno Colbois
    Ahmad El Soufi
    Annals of Global Analysis and Geometry, 2003, 24 : 337 - 349
  • [6] SMALL EIGENVALUES OF THE LAPLACIAN AND EXAMPLES
    PAVLISTA, T
    LECTURE NOTES IN MATHEMATICS, 1985, 1156 : 254 - 263
  • [7] Conformal upper bounds for the eigenvalues of the Laplacian and Steklov problem
    Hassannezhad, Asma
    JOURNAL OF FUNCTIONAL ANALYSIS, 2011, 261 (12) : 3419 - 3436
  • [8] Conformal upper bounds for the eigenvalues of the p-Laplacian
    Colbois, Bruno
    Provenzano, Luigi
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2021, 104 (05): : 2128 - 2147
  • [9] Most Laplacian eigenvalues of a tree are small
    Jacobs, David P.
    Oliveira, Elismar R.
    Trevisan, Vilmar
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2021, 146 : 1 - 33
  • [10] THE EIGENVALUES OF THE LAPLACIAN ON DOMAINS WITH SMALL SLITS
    Hillairet, Luc
    Judge, Chris
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2010, 362 (12) : 6231 - 6259