Optimization of sensitivity encoding with arbitrary k-space trajectories

被引:11
作者
Bydder, Mark [1 ]
Perthen, Joanna E.
Du, Jiang
机构
[1] Univ Calif San Diego, Dept Radiol, MRI3 Res, San Diego, CA 92103 USA
[2] Univ Calif San Diego, Dept Radiol, Ctr FMRI, La Jolla, CA 92093 USA
关键词
parallel imaging; SENSE; regularization; preconditioning; phase constraint; IMAGE-RECONSTRUCTION; PHASED-ARRAY; ALGORITHM; MRI;
D O I
10.1016/j.mri.2007.01.003
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Sensitivity encoding (SENSE) is a magnetic resonance technique that unifies gradient and receive coil encoding. SENSE reconstructs the image by solving a large, ill-conditioned inverse problem, which generally requires regularization and preconditioning. The present study suggests a simple heuristic for determining the regularization parameter. Also discussed are the use of density weighting and intensity correction as preconditioners and the role that coil sensitivity estimation has in regularization. A modification to the intensity correction is proposed for use with a phase constraint. (C) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:1123 / 1129
页数:7
相关论文
共 30 条
[1]  
BJORK A, 1996, NUMERICAL METHODS LE
[2]   Partial fourier partially parallel imaging [J].
Bydder, M ;
Robson, MD .
MAGNETIC RESONANCE IN MEDICINE, 2005, 53 (06) :1393-1401
[3]  
BYDDER M, IN PRESS EVALUATION
[4]  
Dietrich O., 2005, P INT SOC MAG RESON, V13: #, P00158
[5]  
EGGERS H, 2004, P 12 ANN M ISMRM KYO, P2409
[6]   PENALIZED WEIGHTED LEAST-SQUARES IMAGE-RECONSTRUCTION FOR POSITRON EMISSION TOMOGRAPHY [J].
FESSLER, JA .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 1994, 13 (02) :290-300
[7]   Nonuniform fast Fourier transforms using min-max interpolation [J].
Fessler, JA ;
Sutton, BP .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2003, 51 (02) :560-574
[8]  
Fuderer M, 2004, P ISMRM, P2130
[9]  
Golub G. H., 1996, MATRIX COMPUTATIONS, P330
[10]  
KILMER ME, 1998, SIAM J MATRIX ANAL A, DOI UNSP 221204