Extrinsic radius pinching for hypersurfaces of space forms

被引:4
作者
Roth, Julien [1 ]
机构
[1] Univ Nancy 1, Inst Elie Cartan, F-54506 Vandoeuvre Les Nancy, France
关键词
extrinsic radius; pinching; hypersurfaces; space forms;
D O I
10.1016/j.difgeo.2007.06.017
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove some pinching results for the extrinsic radius of compact hypersurfaces in space forms. In the hyperbolic space, we show that if the volume of M is 1, then there exists a constant C depending on the dimension of M and the L-infinity-norm of the second fundamental form B such that the pinching condition tanh(R) < 1/parallel to H parallel to(infinity) + C (where H is the mean curvature) implies that M is diffeomorphic to an n-dimensional sphere. We prove the corresponding result for hypersurfaces of the Euclidean space and the sphere with the L-P-norm of H, p >= 2, instead of the L-infinity-norm. (c) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:485 / 499
页数:15
相关论文
共 21 条