The influence of skeletal maturity on allogenic synovial mesenchymal stem cell-based repair of cartilage in a large animal model

被引:122
作者
Shimomura, Kazunori [6 ]
Ando, Wataru [6 ]
Tateishi, Kosuke [6 ]
Nansai, Ryosuke [5 ]
Fujie, Hiromichi [5 ]
Hart, David A. [4 ]
Kohda, Hideyuki [6 ]
Kita, Keisuke [6 ]
Kanamoto, Takashi [6 ]
Mae, Tatsuo [6 ]
Nakata, Ken [6 ]
Shino, Konsei [3 ]
Yoshikawa, Hideki [6 ]
Nakamura, Norimasa [1 ,2 ]
机构
[1] Osaka Hlth Sci Univ, Dept Rehabil Sci, Kita Ku, Osaka 5300043, Japan
[2] Osaka Univ, Ctr Adv Med Engn & Informat, Suita, Osaka 5650871, Japan
[3] Osaka Prefecture Univ, Fac Comprehens Rehabil, Habikino, Osaka 5838555, Japan
[4] Univ Calgary, McCaig Inst Bone & Joint Hlth, Calgary, AB T2N 4N1, Canada
[5] Kogakuin Univ, Dept Mech Engn, Biomech Lab, Hachioji, Tokyo 1920015, Japan
[6] Osaka Univ, Dept Orthopaed, Grad Sch Med, Suita, Osaka 5650871, Japan
基金
日本学术振兴会;
关键词
Mesenchymal stem cell; Cartilage tissue engineering; Allogenic cell; Aging; Animal model; ARTICULAR-CARTILAGE; OSTEOCHONDRAL DEFECTS; STROMAL CELLS; IN-VIVO; CHONDROCYTE TRANSPLANTATION; DONOR AGE; MATRIX; OSTEOARTHRITIS; GROWTH; DIFFERENTIATION;
D O I
10.1016/j.biomaterials.2010.07.017
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
One of the potential factors that may affect the results of mesenchymal stem cell (MSC)-based therapy is the age of donors and recipients. However, there have been no controlled studies to investigate the influence of skeletal maturity on the MSC-based repair of cartilage. The purpose of this study was to compare the repair quality of damaged articular cartilage treated by a scaffold-free three-dimensional tissue-engineered construct (TEC) derived from synovial MSCs between immature and mature pigs. Synovial MSCs were isolated from immature and mature pigs and the proliferation and chondrogenic differentiation capacities were compared. The TEC derived from the synovial MSCs were then implanted into equivalent chondral defects in the medial femoral condyle of both immature and mature pigs, respectively. The implanted defects were morphologically and biomechanically evaluated at 6 months postoperatively. There was no skeletal maturity-dependent difference in proliferation or chondrogenic differentiation capacity of the porcine synovial MSCs. The TEC derived from synovial MSCs promoted the repair of chondral lesion in both immature and mature pigs without the evidence of immune reaction. The repaired tissue by the TEC also exhibited similar viscoelastic properties to normal cartilage regardless of the skeletal maturity. The results of the present study not only suggest the feasibility of allogenic MSC-based cartilage repair over generations but also may validate the use of immature porcine model as clinically relevant to test the feasibility of synovial MSC-based therapies in chondral lesions. (c) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:8004 / 8011
页数:8
相关论文
共 50 条
[1]   Cartilage repair using an in vitro generated scaffold-free tissue-engineered construct derived from porcine synovial mesenchymal stem cells [J].
Ando, Wataru ;
Tateishi, Kosuke ;
Hart, David A. ;
Katakai, Daisuke ;
Tanaka, Yoshinari ;
Nakata, Ken ;
Hashimoto, Jun ;
Fujie, Hiromichi ;
Shino, Konsel ;
Yoshikawa, Hideki ;
Nakamura, Norimasa .
BIOMATERIALS, 2007, 28 (36) :5462-5470
[2]   In Vitro Generation of a Scaffold-Free Tissue-Engineered Construct (TEC) Derived from Human Synovial Mesenchymal Stem Cells: Biological and Mechanical Properties and Further Chondrogenic Potential [J].
Ando, Wataru ;
Tateishi, Kosuke ;
Katakai, Daisuke ;
Hart, David A. ;
Higuchi, Chikahisa ;
Nakata, Ken ;
Hashimoto, Jun ;
Fujie, Hiromichi ;
Shino, Konsei ;
Yoshikawa, Hideki ;
Nakamura, Norimasa .
TISSUE ENGINEERING PART A, 2008, 14 (12) :2041-2049
[3]  
Bergman RJ, 1996, J BONE MINER RES, V11, P568
[4]  
Bos PK, 2006, ADV EXP MED BIOL, V585, P297
[5]   Articular cartilage engineering with autologous chondrocyte transplantation -: A review of recent developments [J].
Brittberg, M ;
Peterson, L ;
Sjögren-Jansson, E ;
Tallheden, T ;
Lindahl, A .
JOURNAL OF BONE AND JOINT SURGERY-AMERICAN VOLUME, 2003, 85A :109-115
[6]   Articular cartilage injuries [J].
Buckwalter, JA .
CLINICAL ORTHOPAEDICS AND RELATED RESEARCH, 2002, (402) :21-37
[7]  
Chajra H, 2008, BIO-MED MATER ENG, V18, pS33
[8]   VIABILITY MEASUREMENTS IN MAMMALIAN-CELL SYSTEMS [J].
COOK, JA ;
MITCHELL, JB .
ANALYTICAL BIOCHEMISTRY, 1989, 179 (01) :1-7
[9]   Repair of articular cartilage defect in non-weight bearing areas using adipose derived stem cells loaded polyglycolic acid mesh [J].
Cui, Lei ;
Wu, Yaohao ;
Cen, Lian ;
Zhou, Heng ;
Yin, Shuo ;
Liu, Guangpeng ;
Liu, Wei ;
Cao, Yilin .
BIOMATERIALS, 2009, 30 (14) :2683-2693
[10]  
De Bari C, 2001, ARTHRITIS RHEUM, V44, P85, DOI 10.1002/1529-0131(200101)44:1<85::AID-ANR12>3.0.CO