Lipschitz equivalence of self-similar sets with two-state neighbor automaton

被引:11
作者
Zhu, Yunjie [1 ]
Yang, Yamin [2 ]
机构
[1] Cent China Normal Univ, Dept Math & Stat, Wuhan 430079, Hubei, Peoples R China
[2] Huazhong Agr Univ, Coll Sci, Inst Appl Math, Wuhan 430070, Hubei, Peoples R China
关键词
Lipschitz equivalent; Self-similar sets; Neighbor automaton; Ray-separation condition; p-uniform fractals; CANTOR SETS; FRACTAL SQUARES;
D O I
10.1016/j.jmaa.2017.09.007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The study of Lipschitz equivalence of fractals is a very active topic in recent years, but there are very few results on fractals which is not totally disconnected. In this paper, using finite state automata and the angle separation property, we prove that for a class of self-similar sets with two-state neighbor automaton, two elements are Lipschitz equivalent if and only if they have the same Hausdorff dimension. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:379 / 392
页数:14
相关论文
共 24 条
[1]  
[Anonymous], ACTA MATH SIN CHIN S
[2]  
Bandt C., 2009, Banach Center Publ., V84, P131
[3]  
COOPER D, 1988, J DIFFER GEOM, V28, P203
[4]  
David G., 1997, OXFORD LECT SERIES M, V7
[5]   BILIPSCHITZ EMBEDDING OF SELF-SIMILAR SETS [J].
Deng, Juan ;
Wen, Zhi-Ying ;
Xiong, Ying ;
Xi, Li-Feng .
JOURNAL D ANALYSE MATHEMATIQUE, 2011, 114 :63-97
[6]  
Falconer K., 2004, Fractal Geometry: Mathematical Foundations and Applications
[7]   ON THE LIPSCHITZ EQUIVALENCE OF CANTOR SETS [J].
FALCONER, KJ ;
MARSH, DT .
MATHEMATIKA, 1992, 39 (78) :223-233
[8]   Higher dimensional Frobenius problem: Maximal saturated cone, growth function and rigidity [J].
Fan, Ai-hua ;
Rao, Hui ;
Zhang, Yuan .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2015, 104 (03) :533-560
[9]   Topological structure of fractal squares [J].
Lau, Ka-Sing ;
Luo, Jun Jason ;
Rao, Hui .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2013, 155 (01) :73-86
[10]   LIPSCHITZ EQUIVALENCE OF MCMULLEN SETS [J].
Li, Boming ;
Li, Wenxia ;
Miao, Jun Jie .
FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2013, 21 (3-4)