An information global minimization algorithm using the local improvement technique

被引:23
作者
Lera, Daniela [3 ]
Sergeyev, Yaroslav D. [1 ,2 ,4 ]
机构
[1] Univ Calabria, Dipartimento Elettr Informat & Sistemist, I-87036 Arcavacata Di Rende, Cs, Italy
[2] Natl Res Council Italy, Inst High Performance Comp & Networking, I-87036 Arcavacata Di Rende, Italy
[3] Univ Cagliari, Dipartimento Matemat & Informat, Cagliari, Italy
[4] Univ Nizhni Novgorod, Software Dept, Nizhnii Novgorod, Russia
关键词
Global optimization; Local information; Acceleration; OPTIMIZATION;
D O I
10.1007/s10898-009-9508-x
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, the global optimization problem with a multiextremal objective function satisfying the Lipschitz condition over a hypercube is considered. An algorithm that belongs to the class of information methods introduced by R.G. Strongin is proposed. The knowledge of the Lipschitz constant is not supposed. The local tuning on the behavior of the objective function and a new technique, named the local improvement, are used in order to accelerate the search. Two methods are presented: the first one deals with the one-dimensional problems and the second with the multidimensional ones (by using Peano-type space-filling curves for reduction of the dimension of the problem). Convergence conditions for both algorithms are given. Numerical experiments executed on more than 600 functions show quite a promising performance of the new techniques.
引用
收藏
页码:99 / 112
页数:14
相关论文
共 23 条
  • [1] [Anonymous], 1992, J GLOBAL OPTIM
  • [2] SPACE FILLING CURVES AND MATHEMATICAL PROGRAMMING
    BUTZ, AR
    [J]. INFORMATION AND CONTROL, 1968, 12 (04): : 314 - &
  • [3] Dill K.A., 1997, DEV GLOBAL OPTIMIZAT, P217
  • [4] Evtushenko Yu. G., 1971, Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki, V11, P1390
  • [5] Algorithm 829: Software for generation of classes of test functions with known local and global minima for global optimization
    Gaviano, M
    Kvasov, DE
    Lera, D
    Sergeyev, YD
    [J]. ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 2003, 29 (04): : 469 - 480
  • [6] Grishagin V., 1978, PROBLEMS STOCHASTIC, V7, P198
  • [7] GLOBAL OPTIMIZATION OF UNIVARIATE LIPSCHITZ FUNCTIONS .2. NEW ALGORITHMS AND COMPUTATIONAL COMPARISON
    HANSEN, P
    JAUMARD, B
    LU, SH
    [J]. MATHEMATICAL PROGRAMMING, 1992, 55 (03) : 273 - 292
  • [8] Horst R., 1995, Handbook of Global Optimization: Nonconvex Optimization and Its Application
  • [9] Kushner HJ., 1964, J. Basic Eng., V86, P97, DOI 10.1115/1.3653121
  • [10] Global minimization algorithms for Holder functions
    Lera, D
    Sergeyev, YD
    [J]. BIT, 2002, 42 (01): : 119 - 133