EXISTENCE OF SOLUTIONS FOR ANISOTROPIC CAHN-HILLIARD AND ALLEN-CAHN SYSTEMS IN HIGHER SPACE DIMENSIONS

被引:11
作者
Makki, Ahmad [1 ]
Miranville, Alain [1 ]
机构
[1] Univ Poitiers, Lab Math & Applicat, CNRS, UMR 7348,SP2MI, Blvd Marie & Pierre Curie Teleport 2, F-86962 Futuroscope, France
来源
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S | 2016年 / 9卷 / 03期
关键词
Cahn-Hilliard equation; Allen-Cahn equation; anisotropy; Willmore regularization; well-posedness; TERNARY AMPHIPHILIC SYSTEMS; GINZBURG-LANDAU THEORY; PHASE-FIELD MODEL; EQUATION; FLUCTUATIONS; SIMULATIONS; BOUNDARY;
D O I
10.3934/dcdss.2016027
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Our aim in this paper is to prove the existence and uniqueness of solutions to Cahn-Hilliard and Allen-Cahn type equations based on a modification of the Ginzburg-Landau free energy proposed in [12] (see also [16]) which takes into account strong anisotropy effects. In particular, the free energy contains a regularization term, called Willmore regularization.
引用
收藏
页码:759 / 775
页数:17
相关论文
共 19 条
[11]   Stable and efficient finite-difference nonlinear-multigrid schemes for the phase field crystal equation [J].
Hu, Z. ;
Wise, S. M. ;
Wang, C. ;
Lowengrub, J. S. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2009, 228 (15) :5323-5339
[12]   MODELING AND NUMERICAL SIMULATIONS OF DENDRITIC CRYSTAL-GROWTH [J].
KOBAYASHI, R .
PHYSICA D, 1993, 63 (3-4) :410-423
[13]   GLOBAL WEAK SOLUTIONS TO A SIXTH ORDER CAHN-HILLIARD TYPE EQUATION [J].
Korzec, M. D. ;
Nayar, P. ;
Rybka, P. .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2012, 44 (05) :3369-3387
[14]   ON A HIGHER ORDER CONVECTIVE CAHN-HILLIARD-TYPE EQUATION [J].
Korzec, M. D. ;
Rybka, P. .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2012, 72 (04) :1343-1360
[15]  
Makki A., 2015, ELECT J DIFFERENTIAL, P1
[16]  
Miranville A, 2013, J APPL ANAL COMPUT, V3, P265
[17]   Faceting of a growing crystal surface by surface diffusion [J].
Savina, TV ;
Golovin, AA ;
Davis, SH ;
Nepomnyashchy, AA ;
Voorhees, PW .
PHYSICAL REVIEW E, 2003, 67 (02) :16
[18]   Diffuse interfaces with sharp corners and facets: Phase field models with strongly anisotropic surfaces [J].
Taylor, JE ;
Cahn, JW .
PHYSICA D-NONLINEAR PHENOMENA, 1998, 112 (3-4) :381-411
[19]   A new phase-field model for strongly anisotropic systems [J].
Torabi, Solmaz ;
Lowengrub, John ;
Voigt, Axel ;
Wise, Steven .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2009, 465 (2105) :1337-1359