Extracellular electron transfer powers flavinylated extracellular reductases in Gram-positive bacteria

被引:69
作者
Light, Samuel H. [1 ,2 ]
Meheust, Raphael [3 ,4 ]
Ferrell, Jessica L. [5 ]
Cho, Jooyoung [5 ]
Deng, David [1 ,2 ]
Agostoni, Marco [6 ]
Iavarone, Anthony T. [6 ,7 ]
Banfield, Jillian F. [3 ,4 ]
D'Orazio, Sarah E. F. [5 ]
Portnoy, Daniel A. [1 ,2 ]
机构
[1] Univ Calif Berkeley, Dept Mol & Cell Biol, 229 Stanley Hall, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Dept Plant & Microbial Biol, Berkeley, CA 94720 USA
[3] Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA
[4] Innovat Genom Inst, Berkeley, CA 94704 USA
[5] Univ Kentucky, Dept Microbiol Immunol & Mol Genet, Lexington, KY 40536 USA
[6] Univ Calif Berkeley, Calif Inst Quantitat Biosci QB3, Berkeley, CA 94720 USA
[7] Univ Calif Berkeley, Chem Mass Spectrometry Facil, QB3, Berkeley, CA 94720 USA
基金
美国国家卫生研究院;
关键词
bacterial pathogenesis; cellular respiration; electromicrobiology; exoelectrogen; fumarate/urocanate; COVALENTLY-BOUND FLAVIN; TETRAHEME CYTOCHROME-C; FUMARATE REDUCTASE; LISTERIA-MONOCYTOGENES; SUCCINATE-DEHYDROGENASE; ESCHERICHIA-COLI; IDENTIFICATION; RESPIRATION; SEQUENCE; GROWTH;
D O I
10.1073/pnas.1915678116
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Mineral-respiring bacteria use a process called extracellular electron transfer to route their respiratory electron transport chain to insoluble electron acceptors on the exterior of the cell. We recently characterized a flavin-based extracellular electron transfer system that is present in the foodborne pathogen Listeria monocytogenes, as well as many other Gram-positive bacteria, and which highlights a more generalized role for extracellular electron transfer in microbial metabolism. Here we identify a family of putative extracellular reductases that possess a conserved posttranslational flavinylation modification. Phylogenetic analyses suggest that divergent flavinylated extracellular reductase subfamilies possess distinct and often unidentified substrate specificities. We show that flavinylation of a member of the fumarate reductase subfamily allows this enzyme to receive electrons from the extracellular electron transfer system and support L. monocytogenes growth. We demonstrate that this represents a generalizable mechanism by finding that a L. monocytogenes strain engineered to express a flavinylated extracellular urocanate reductase uses urocanate by a related mechanism and to a similar effect. These studies thus identify an enzyme family that exploits a modular flavin-based electron transfer strategy to reduce distinct extracellular substrates and support a multifunctional view of the role of extracellular electron transfer activities in microbial physiology.
引用
收藏
页码:26892 / 26899
页数:8
相关论文
共 71 条
[1]   SignalP 5.0 improves signal peptide predictions using deep neural networks [J].
Armenteros, Jose Juan Almagro ;
Tsirigos, Konstantinos D. ;
Sonderby, Casper Kaae ;
Petersen, Thomas Nordahl ;
Winther, Ole ;
Brunak, Soren ;
von Heijne, Gunnar ;
Nielsen, Henrik .
NATURE BIOTECHNOLOGY, 2019, 37 (04) :420-+
[2]   FUMARATE REDUCTASE ACTIVITY OF STREPTOCOCCUS FAECALIS [J].
AUE, BJ ;
DEIBEL, RH .
JOURNAL OF BACTERIOLOGY, 1967, 93 (06) :1770-&
[3]   Development of a competitive index assay to evaluate the virulence of Listeria monocytogenes actA mutants during primary and secondary infection of mice [J].
Auerbuch, V ;
Lenz, LL ;
Portnoy, DA .
INFECTION AND IMMUNITY, 2001, 69 (09) :5953-5957
[4]  
Bamford V, 1999, NAT STRUCT BIOL, V6, P1104
[5]   CLONING AND SEQUENCING OF 4 STRUCTURAL GENES FOR THE NA+-TRANSLOCATING NADH-UBIQUINONE OXIDOREDUCTASE OF VIBRIO-ALGINOLYTICUS [J].
BEATTIE, P ;
TAN, K ;
BOURNE, RM ;
LEACH, D ;
RICH, PR ;
WARD, FB .
FEBS LETTERS, 1994, 356 (2-3) :333-338
[6]   Comparison of Widely Used Listeria monocytogenes Strains EGD, 10403S, and EGD-e Highlights Genomic Differences Underlying Variations in Pathogenicity [J].
Becavin, Christophe ;
Bouchier, Christiane ;
Lechat, Pierre ;
Archambaud, Cristel ;
Creno, Sophie ;
Gouin, Edith ;
Wu, Zongfu ;
Kuehbacher, Andreas ;
Brisse, Sylvain ;
Graciela Pucciarelli, M. ;
Garcia-del Portillo, Francisco ;
Hain, Torsten ;
Portnoy, Daniel A. ;
Chakraborty, Trinad ;
Lecuit, Marc ;
Pizarro-Cerda, Javier ;
Moszer, Ivan ;
Bierne, Helene ;
Cossart, Pascale .
MBIO, 2014, 5 (02)
[7]   Localization-controlled specificity of FAD:threonine flavin transferases in Klebsiella pneumoniae and its implications for the mechanism of Na+-translocating NADH:quinone oxidoreductase [J].
Bertsova, Yulia V. ;
Kostyrko, Vitaly A. ;
Baykov, Alexander A. ;
Bogachev, Alexander V. .
BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS, 2014, 1837 (07) :1122-1129
[8]   Alternative Pyrimidine Biosynthesis Protein ApbE Is a Flavin Transferase Catalyzing Covalent Attachment of FMN to a Threonine Residue in Bacterial Flavoproteins [J].
Bertsova, Yulia V. ;
Fadeeva, Maria S. ;
Kostyrko, Vitaly A. ;
Serebryakova, Marina V. ;
Baykov, Alexander A. ;
Bogachev, Alexander V. .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2013, 288 (20) :14276-14286
[9]  
BLAUT M, 1989, J BIOL CHEM, V264, P13599
[10]   Flavin transferase: the maturation factor of flavin-containing oxidoreductases [J].
Bogachev, Alexander V. ;
Baykov, Alexander A. ;
Bertsova, Yulia V. .
BIOCHEMICAL SOCIETY TRANSACTIONS, 2018, 46 :1161-1169