Hamilton l-cycles in uniform hypergraphs

被引:49
作者
Kuehn, Daniela [1 ]
Mycroft, Richard [1 ]
Osthus, Deryk [1 ]
机构
[1] Univ Birmingham, Sch Math, Birmingham B15 2TT, W Midlands, England
基金
英国工程与自然科学研究理事会;
关键词
Hamilton cycles; Hypergraphs; Regularity lemma; DIRAC-TYPE THEOREM; 3-UNIFORM HYPERGRAPHS; REGULAR PARTITIONS; LEMMAS;
D O I
10.1016/j.jcta.2010.02.010
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We say that a k-uniform hypergraph C is an l-cycle if there exists a cyclic ordering of the vertices of C such that every edge of C consists of k consecutive vertices and such that every pair of consecutive edges (in the natural ordering of the edges) intersects in precisely l vertices. We prove that if 1 <= l < k and k - l does not divide k then any k-uniform hypergraph on n vertices with minimum degree at least n/[k/k-l] (k-l) + o(n) contains a Hamilton l-cycle. This confirms a conjecture of Han and Schacht. Together with results of Rodl, Rucinski and Szemeredi, our result asymptotically determines the minimum degree which forces an l-cycle for any l with 1 <= l < k. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:910 / 927
页数:18
相关论文
共 19 条
  • [1] [Anonymous], 1952, Proceedings of the London Mathematical Society, DOI [10.1112/plms/s3-2.1.69, DOI 10.1112/PLMS/S3-2.1.69]
  • [2] Bermond JC., 1976, PROB COMB THEORIE GR, V260, P39
  • [3] Embeddings and Ramsey numbers of sparse κ-uniform hypergraphs
    Cooley, Oliver
    Fountoulakis, Nikolaos
    Kuehn, Daniela
    Osthus, Deryk
    [J]. COMBINATORICA, 2009, 29 (03) : 263 - 297
  • [4] DEGREES GIVING INDEPENDENT EDGES IN A HYPERGRAPH
    DAYKIN, DE
    HAGGKVIST, R
    [J]. BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1981, 23 (01) : 103 - 109
  • [5] Hypergraph regularity and the multidimensional Szemeredi theorem
    Gowers, W. T.
    [J]. ANNALS OF MATHEMATICS, 2007, 166 (03) : 897 - 946
  • [6] Dirac-type results for loose Hamilton cycles in uniform hypergraphs
    Han, Hiep
    Schacht, Mathias
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 2010, 100 (03) : 332 - 346
  • [7] Katona GY, 1999, J GRAPH THEOR, V30, P205, DOI 10.1002/(SICI)1097-0118(199903)30:3<205::AID-JGT5>3.0.CO
  • [8] 2-O
  • [9] KEEVASH P, LOOSE HAMILTON CYCLE
  • [10] KEEVASH P, HYPERGRAPH BLOW UP L