A removable singularity in a suitable weak solution to the Navier-Stokes equations

被引:4
作者
Neustupa, Jiri [1 ]
机构
[1] Acad Sci Czech Republ, Inst Math, CR-11567 Prague 1, Czech Republic
关键词
INTERIOR REGULARITY; LOCAL REGULARITY; CRITERIA;
D O I
10.1088/0951-7715/25/6/1695
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We formulate a new criterion for regularity of a suitable weak solution v to the Navier-Stokes equations at the point (x(0), t(0)). We show that it is sufficient to impose conditions on the Serrin-type integrability of v and the associated pressure p in a parabolic neighbourhood of (x(0), t(0)), intersected with the exterior of a certain space-time paraboloid with the vertex at point (x(0), t(0)). We make no special assumptions on v or p in the interior of the paraboloid.
引用
收藏
页码:1695 / 1708
页数:14
相关论文
共 27 条
[1]   PARTIAL REGULARITY OF SUITABLE WEAK SOLUTIONS OF THE NAVIER-STOKES EQUATIONS [J].
CAFFARELLI, L ;
KOHN, R ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1982, 35 (06) :771-831
[2]  
FARWIG R., 2008, BANACH CTR PUBL, P175
[3]   An Lq-approach to Stokes and Navier-Stokes equations in general domains [J].
Farwig, Reinhard ;
Kozono, Hideo ;
Sohr, Hermann .
ACTA MATHEMATICA, 2005, 195 (01) :21-53
[4]   Energy-Based Regularity Criteria for the Navier-Stokes Equations [J].
Farwig, Reinhard ;
Kozono, Hideo ;
Sohr, Hermann .
JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2009, 11 (03) :428-442
[5]  
Galdi GP, 2000, ADV MATH FLUID MECH, P1
[6]  
Hopf E., 1951, Math. Nachr., V4, P213, DOI [/10.1002/mana.3210040121, DOI 10.1002/MANA.3210040121]
[7]  
Kozono H., 1998, Lecture Notes Numer. Appl. Anal., V16, P161
[8]   On Partial Regularity of Suitable Weak Solutions to the Three-Dimensional Navier-Stokes equations [J].
Ladyzhenskaya, O. A. ;
Seregin, G. A. .
JOURNAL OF MATHEMATICAL FLUID MECHANICS, 1999, 1 (04) :356-387
[9]  
Ladyzhenskaya OA, 1963, MATH PROBLEMS DYNAMI
[10]   On the movement of a viscous fluid to fill the space [J].
Leray, J .
ACTA MATHEMATICA, 1934, 63 (01) :193-248