Design and Fabrication of Metamaterial Anti-Reflection Coatings for the Simons Observatory

被引:14
作者
Golec, Joseph E. [1 ]
McMahon, Jeffrey J. [1 ,2 ,3 ,4 ]
Ali, Aamire M. [5 ]
Dicker, Simon [6 ]
Galitzki, Nicholas [7 ]
Harrington, Kathleen [2 ]
Westbrook, Benjamin [5 ]
Wollack, Edward J. [8 ]
Xu, Zhilei [6 ]
Zhu, Ningfeng [6 ]
机构
[1] Univ Chicago, Dept Phys, Chicago, IL 60637 USA
[2] Univ Chicago, Dept Astron & Astrophys, 5640 S Ellis Ave, Chicago, IL 60637 USA
[3] Univ Chicago, Kavli Inst Cosmol Phys, Chicago, IL 60637 USA
[4] Univ Chicago, Enrico Fermi Inst, 5640 S Ellis Ave, Chicago, IL 60637 USA
[5] Univ Calif Berkeley, Dept Phys, Berkeley, CA USA
[6] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA
[7] Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA
[8] NASA, Goddard Space Flight Ctr, Greenbelt, MD USA
来源
ADVANCES IN OPTICAL AND MECHANICAL TECHNOLOGIES FOR TELESCOPES AND INSTRUMENTATION IV | 2020年 / 11451卷
关键词
Simons Observatory; millimeter wavelengths; CMB; anti-reflection coatings; BROAD-BAND;
D O I
10.1117/12.2561720
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The Simons Observatory (SO) will be a cosmic microwave background (CMB) survey experiment with three small-aperture telescopes and one large-aperture telescope, which will observe from the Atacama Desert in Chile. In total, SO will field over 60,000 transition-edge sensor (TES) bolometers in six spectral bands centered between 27 and 280 GHz in order to achieve the sensitivity necessary to measure or constrain numerous cosmological quantities, as outlined in The Simons Observatory Collaboration et al. (2019). These telescopes require 33 highly transparent, large aperture, refracting optics. To this end, we developed mechanically robust, highly efficient, metamaterial anti-reflection (AR) coatings with octave bandwidth coverage for silicon optics up to 46 cm in diameter for the 22-55, 75-165, and 190-310 GHz bands. We detail the design, the manufacturing approach to fabricate the SO lenses, their performance, and possible extensions of metamaterial AR coatings to optical elements made of harder materials such as alumina.
引用
收藏
页数:8
相关论文
共 50 条
[21]   Fabrication and simulation investigation of zig-zag nanorod-structured graded-index anti-reflection coatings for LED applications [J].
Liu, Shizhao ;
Xu, Yueming ;
Plawsky, Joel L. ;
Raukas, Madis ;
Piquette, Alan ;
Lenef, Alan .
JOURNAL OF APPLIED PHYSICS, 2019, 125 (17)
[22]   Fabrication of porous TiO2-SiO2 multifunctional anti-reflection coatings by sol-gel spin coating method [J].
Mao, Qiangqiang ;
Zeng, Dawen ;
Xu, Keng ;
Xie, Changsheng .
RSC ADVANCES, 2014, 4 (101) :58101-58107
[23]   Fabrication of silica nanopillars by templated etching using bimetallic nanoparticles for anti-reflection applications [J].
Kumar, Krishna ;
Swaminathan, P. .
APPLIED SURFACE SCIENCE, 2018, 456 :915-922
[24]   Simons Observatory large aperture telescope receiver design overview [J].
Zhu, Ningfeng ;
Orlowski-Scherer, John L. ;
Xu, Zhilei ;
Ali, Aamir ;
Arnold, Kam S. ;
Ashton, Peter C. ;
Coppi, Gabriele ;
Devlin, Mark J. ;
Dicker, Simon ;
Galitzki, Nicholas ;
Gallardo, Patricio A. ;
Henderson, Shawn W. ;
Ho, Shuay-Pwu Patty ;
Hubmayr, Johannes ;
Keating, Brian ;
Lee, Adrian T. ;
Limon, Michele ;
Lungu, Marius ;
Mauskop, Philip D. ;
May, Andrew J. ;
McMahon, Jeff ;
Niemack, Michael D. ;
Piccirillo, Lucio ;
Puglisi, Giuseppe ;
Rao, Mayuri Sathyanarayana ;
Salatino, Maria ;
Silva-Feaver, Max ;
Simon, Sara M. ;
Staggs, Suzanne ;
Thornton, Robert ;
Ullom, Joel N. ;
Vavagiakis, Eve M. ;
Westbrook, Benjamin ;
Wollack, Edward J. .
MILLIMETER, SUBMILLIMETER, AND FAR-INFRARED DETECTORS AND INSTRUMENTATION FOR ASTRONOMY IX, 2018, 10708
[25]   The Simons Observatory: Design, Integration, and Testing of the Small Aperture Telescopes [J].
Galitzki, Nicholas ;
Tsan, Tran ;
Spisak, Jake ;
Randall, Michael ;
Silva-Feaver, Max ;
Seibert, Joseph ;
Lashner, Jacob ;
Adachi, Shunsuke ;
Adkins, Sean M. ;
Alford, Thomas ;
Arnold, Kam ;
Ashton, Peter C. ;
Austermann, Jason E. ;
Baccigalupi, Carlo ;
Bazarko, Andrew ;
Beall, James A. ;
Bhimani, Sanah ;
Bixler, Bryce ;
Coppi, Gabriele ;
Corbett, Lance ;
Crowley, Kevin D. ;
Crowley, Kevin T. ;
Day-Weiss, Samuel ;
Devlin, Mark J. ;
Dicker, Simon ;
DiGia, Brooke ;
Dow, Peter N. ;
Duell, Cody J. ;
Duff, Shannon M. ;
Gerras, Remington G. ;
Groh, John C. ;
Gudmundsson, Jon E. ;
Harrington, Kathleen ;
Hasegawa, Masaya ;
Healy, Erin ;
Henderson, Shawn W. ;
Hubmayr, Johannes ;
Iuliano, Jeffrey ;
Johnson, Bradley R. ;
Keating, Brian ;
Keller, Ben ;
Kiuchi, Kenji ;
Kofman, Anna M. ;
Koopman, Brian J. ;
Kusaka, Akito ;
Lee, Adrian T. ;
Lew, Richard A. ;
Lin, Lawrence T. ;
Link, Michael J. ;
Lucas, Tammy J. .
ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 2024, 274 (02)
[26]   Preparation and stability study of broadband anti-reflection coatings and application research for CdTe solar cell [J].
Hu, Dingqin ;
Liu, Dong ;
Zhang, Jingquan ;
Wu, Lili ;
Li, Wei .
OPTICAL MATERIALS, 2018, 77 :132-139
[27]   Design and Fabrication of Moth-Eye Subwavelength Structure with a Waist on Silicon for Broadband and Wide-Angle Anti-Reflection Property [J].
Lin, He ;
Ouyang, Mingzhao ;
Chen, Bingxu ;
Zhu, Qifan ;
Wu, Jinshuang ;
Lou, Nan ;
Dong, Litong ;
Wang, Zuobin ;
Fu, Yuegang .
COATINGS, 2018, 8 (10)
[28]   Modeling and analysis of multicolored anti-reflection coatings with high transmittance for different solar cell materials [J].
Lumb, Matthew P. ;
Yoon, Woojun ;
Bailey, Christopher G. ;
Scheiman, David ;
Tischler, Joseph G. ;
Walters, Robert J. .
2013 IEEE 39TH PHOTOVOLTAIC SPECIALISTS CONFERENCE (PVSC), 2013, :1888-1893
[29]   Anti-reflection technology for beam sampling grating [J].
Institute of Information Optical Engineering, Soochow University, Suzhou 215006, China .
Qiangjiguang Yu Lizishu, 2007, 1 (75-78)
[30]   Resonant Anti-Reflection Metasurfaces for Infrared Transmission Optics [J].
Brewer, John ;
Kulkarni, Sachin ;
Raman, Aaswath P. .
NANO LETTERS, 2023, 23 (19) :8940-8946